Какие свойства смазочных масел обеспечивают надежную работу механизмов
Перейти к содержимому

Какие свойства смазочных масел обеспечивают надежную работу механизмов

  • автор:

главная > справочник > химическая энциклопедия:

Смазочные масла, жидкие смазочные материалы. предназначенные для уменьшения трения и износа узлов и деталей машин и механизмов, защиты их от коррозии, очистки трущихся пов-стей от загрязнений и отвода от них теплоты. В зависимости от способа получения смазочных маслел подразделяют на нефтяные масла. синтетические масла. масла растит. и животного происхождения. Объем произ-ва животных масел невелик; чаще других применяют касторовое и костное масла, причем, как правило, в качестве компонентов нефтяных и синтетич. масел.

По назначению различают моторные масла (см. также Автолы. Газотурбинные масла. Загущенные масла, Прира-боточные масла и др.), трансмиссионные масла. энергетич. масла (см. Изоляционные масла. Компрессорные масла. Турбинные масла), индустриальные масла (см. также Приборные масла, Редукторные масла), технол. масла (см. Технологические смазочные материалы., консервационные масла. мед. и парфюм. масла (см. Белые масла). Качество смазочных масел определяется комплексом эксплуатац. свойств, основные из которых рассмотрены ниже.

Смазочные свойства характеризуют способность масел уменьшать трение, снижать или предотвращать износ, заедание и задир пов-стей трения, ослаблять либо замедлять контактную усталость взаимодействующих металлич. пов-стей, обеспечивать более прочный контакт смыкающихся пов-стей во фрикционных механизмах и др.

Вязкостные свойства характеризуют вязкость масел в заданных условиях работы и зависимость ее от температуры, давления и приложенного напряжения сдвига. Особенно важны вязкостно-температурные свойства: с понижением температуры вязкость существенно возрастает, что затрудняет пуск и начало движения машин и механизмов; при выборе масла обычно стремятся к тому, чтобы в заданном диапазоне температур вязкость изменялась незначительно.

Низкотемпературные свойства характеризуют способность масел поступать в зазор между трущимися пов-стями при низких температурах и обеспечивать надежную работу машин и механизмов с момента их пуска до выхода на. установившийся температурный режим. Высокотемпературные свойства характеризуют термич. и термоокислит. (воздействие кислорода воздуха) стабильность масел при высоких температурах.

Антикоррозионные и защитные свойства характеризуют способность масел: а) не вызывать коррозию металлич. узлов и деталей и защищать их от воздействия агрессивных веществ, если они образовались в масле при работе или попали в него извне; б) защищать металлич. пов-сти от электрохим. (в т. ч. атмосферной) коррозии в период хранения техники во время длительных остановок и ее эксплуатации во влажном климате.

Моюще-диспергирующие свойства характеризуют способность масел препятствовать отложению на металлич. пов-стях продуктов окисления и загрязнений путем поддерживания их во взвешенном состоянии в виде тонко диспер-гир. частиц. Деэмульгирующие свойства характеризуют способность масел предотвращать образование стойких эмульсий при попадании в них посторонних жидкостей (в первую очередь воды).

Антипенные свойства характеризуют способность масел препятствовать образованию стабильной пены. особенно при работе их в циркуляц. системах смазки в условиях интенсивного перемешивания с воздухом. а также в вакууме. Совместимость с неметаллич. материалами характеризует способность масел не вызывать размягчение, набухание или охрупчивание натурального и синтетич. кау-чуков, пластмасс. лаков и др. и не вымывать из них отдельные ингредиенты.

Для улучшения или сохранения на длительный срок описанных и иных эксплуатац. свойств смазочных масел к их основе (базовому маслу) добавляют в кол-вах 0,001-20% по массе разл. функцией, присадки (см. Металлоплакирующие смазочные материалы. Присадки к смазочным материалам ) . Это обеспечивает надежную работу узлов трения при температуре от —70 до 280-300 °С давлении до 3000-3500 МПа, частотах вращения до 1300 с , скоростях скольжения в трущихся контактах до 20м/с. Отработанные смазочные масла подвергают регенерации с целью их повторного использования. При регенерации из масел удаляют продукты износа, термич. разложения и окислит. полимеризации. мех. примеси, воду. Методы регенерации, осуществляемой на спец. установках, подразделяют на физ. (сепарация, фильтрование. отстаивание. а иногда отгонка легких нефтяных топливных фракций), физ.-хим. (адсорбция, коагуляция растворенных смолисто-асфальтеновых веществ, очистка селективными растворителями) и хим. (сернокислотная или щелочная очистка). По сравнению с качеством исходных смазочных масел качество регенерир. масел неск. хуже, поэтому сроки их службы сокращены.

При произ-ве и применении смазочных масел контролируют их свойства, определяя физ.-хим. (вязкость, плотность, температуры вспышки и застывания, кислотное число, зольность, цвет и др.) и некоторые эксплуатац. (смазочные свойства, агрессивность, эмульгируемость и т.д.) показатели качества. При изменении технологии, замене сырья или отдельных компонентов, передаче произ-ва на др. предприятие проводят т. наз. квалификац. испытания. При этом определяют соответствие требованиям стандартов (техн. условий) испытуемых образцов и возможность их использования наравне с эталонными с помощью лаб. методов, испытаний на модельных установках и полноразмерных механизмах. Св-ва новых смазочных масел устанавливают, выполняя в неск. этапов государств. приемочные испытания (лаб.-стендовые стендовые, полигонные и эксплуатационные). Мировое производство смазочных масел составляет ок. 20 млн. т/год (1989).

Лит.: Теоретические основы химмотологии, под ред. А. А. Браткова, М., 1985; Гуреев А. А., Фукс И. Г., Лашхи В. Л., Химмотология, М., 1986; Топлива, смазочные материалы. технические жидкости. Ассортимент и применение. Справочное издание, под ред. В. М. Школьникова, М., 1989.

Читайте также:

Эксплуатационные свойства смазочных масел и улучшение их присадками

Нуруллаева, З. В. Эксплуатационные свойства смазочных масел и улучшение их присадками / З. В. Нуруллаева, Ш. К. Бакиева, М. Т. Суяров. — Текст : непосредственный // Молодой ученый. — 2016. — № 8 (112). — С. 274-276. — URL: https://moluch.ru/archive/112/28117/ (дата обращения: 25.02.2024).

Смазочное масло представляет собой масляную основу — базовое масло, в которую вводят присадки разного функционального назначения. Масла можно классифицировать происхождению, способу получения и по назначению.

По происхождению все смазочные масла делят на нефтяные, или минеральные, синтетические и смешанные, содержащие в своем составе нефтяной и синтетический компоненты в разных соотношениях. Кроме того, нефтяные масла можно подразделить на дистиллятные, получаемые из вакуумных дистиллятов и остаточные, получаемые из остатков перегонки нефти — гудронов. По способу получения нефтяные масла подразделяются на масла, полученные кислотно-щелочной, кислотно-контактной, селективной очисткой, либо гидроочисткой. В последнее время широко применяются масла гидрокрекинга. По назначению масла делятся на моторные, индустриальные, трансмиссионные, компрессорные, турбинные, и другие. Моторные масла по объему производства и потребления уверенно занимают лидирующую позицию. Их производиться более 55 % от общего объема смазочных масел.

Вторую большую группу составляют индустриальные масла; объем их выпуска около 30 %. Намного меньше производится трансмиссионных масел — около 10 %. Общий объем выпуска всех остальных групп масел составляет около 5 %.

Не зависимо от области применения смазочные масла выполняют следующие функции:

– уменьшают трение, возникающее между трущимися поверхностями сопряженных деталей;

– снижают износ и предотвращают задир;

– отводят тепло от трущихся деталей;

– защищают трущиеся поверхности от коррозионного воздействия внешней среды.

Кроме того, масла должны обладать:

– оптимальными вязкостно-температурными свойствами для облегчения запуска машин и механизмов при низких температурах окружающего воздуха, для снижения износа трущихся деталей и уменьшения потерь мощности машины или механизма на трение;

– хорошими смазочными свойствами для облегчения надежной смазки на всех режимах работы объекта;

– достаточной антиокислительной стойкостью, препятствующей значительному изменению химического состава масла в процессе его работы;

– хорошими моющими свойствами с целью снижения склонности к образованию отложений на нагретых металлических поверхностях и в системе смазки;

– высокими противокоррозионными свойствами по отношению к конструкционным материалам, особенно к цветным металлам и сплавам при рабочих температурах масла;

– удовлетворительными защитными свойствами для предохранения металлов от атмосферной коррозии прежде всего в период остановки машины или механизма.

Кроме этого, смазочное масло должно обладать: низкой испаряемостью, малой пенообразующей способностью и эмульгируемостью, не должно оказывать отрицательного воздействия на уплотнительные материалы, не отличаться высокой токсичностью и не подвергаться биоповреждениям, а также не вызывать загрязнения окружающей среды, не изменять своих свойств при хранении, легко транспортироваться и перекачиваться.

Постоянное совершенствование автомобилей и их двигателей, возрастание мощности, частоты вращения и нагрузок на узлы и агрегаты требует новых, более качественных смазочных масел. Поэтому ведутся поиски новых материалов.

Перспективы развития смазочных масел можно ориентировочно разделить на три направления:

– твёрдые смазочные материалы (покрытия);

– добавки к смазочным маслам.

Для обеспечения оптимальных условий работы мощных и высокооборотных современных двигателей внутреннего сгорания требуются высококачественные смазочные масла. Такие масла могут быть получены из нефти в весьма незначительных количествах или же их получение вообще невозможно. Для придания всего необходимого комплекса эксплуатационных свойств в масла добавляют присадки, которые улучшают один или несколько показателей качества. Присадки, улучшающие сразу несколько показателей качества называют комплексными или многофункциональными. Смазочные свойства моторных масел имеют большое значение для нормальной работы кривошипно-шатунного и газораспределительного механизмов двигателя. В цилиндропоршневой группе, где возникают наибольшие силы трения, высокие смазочные свойства масел во многом определяют ресурс двигателя до его капитального ремонта. Не меньшее значение имеет постоянное наличие надежной масляной пленки в зоне контакта опорных и шатунных шеек коленчатого вала с подшипниками скольжения. Одним из наиболее экономически выгодных путей увеличения долговечности узлов трения является повышение качества смазочных материалов, в первую очередь смазывающей способности, достигаемое в основном путем введения в них противоизносных, противозадирных и антифрикционных присадок и добавок.

Антифрикционные свойства — характеристика смазывающей способности. Эти свойства заключаются в способности смазочного материала уменьшать затраты энергии на трение. Основным показателем антифрикционных свойств жидких смазочных материалов является вязкость. Величина вязкости смазочного масла всецело определяется его групповым углеводородным и фракционным составом.

Противоизносные свойства — характеристика смазывающей способности. Эти свойства заключаются в способности смазочных материалов снижать процесс изнашивания трущихся деталей за счет образования на них граничного слоя, препятствующего непосредственному контакту трущихся поверхностей. Изнашивание деталей происходит в результате отделений материала с поверхности твердого тела при трении и накопления остаточной деформации с постепенным изменением размеров и форм тела. Изнашивание деталей происходит в результате механического, абразивного, гидроабразивного, коррозионно-механического и окислительного воздействия на трущиеся поверхности.

Противозадирные свойства — характеристика смазывающей способности. Эти свойства заключаются в способности смазочного материала предотвращать повреждение трущихся поверхностей в направлении скольжения в виде широких и глубоких борозд, которое называется задиром. Задир может произойти в результате процессов схватывания или заедания поверхностей при трении. Схватывание — явление местного соединения двух твердых тел, происходящее при трении вследствие молекулярных сил.

Противоизносные, противозадирные и антифрикционные присадки и добавки.

По механизму действия данные присадки можно условно разделить на две группы: поверхностно-активные вещества, адсорбирующиеся на рабочих поверхностях деталей и образующие ориентированную структуру (физическая адсорбция) химически активные вещества, при действии которых на поверхности металла образуются новые соединения (хемо-сорбция).

Присадки первой группы придают новые свойства смазочным пленкам, которые приобретают способность в большей мере сопротивляться выдавливанию, чем смазочные пленки, образованные маслами без присадок. Присадки, работающие по принципу физической адсорбции, обычно увеличивают «маслянистость», то есть способность понижать трение в большей мере, чем это следует из значения вязкости масла. В тяжелых условиях работы, когда износ может принимать катастрофический характер, основной целью использования присадок является предотвращение задира трущихся пар.

Присадки второй группы в результате химической адсорбции образуют на трущихся поверхностях тонкий слой продуктов взаимодействия (вторичных структур), механические свойства которых существенно отличаются от механических свойств металла деталей.

Накопленные знания и опыт изучении механизма действия присадок, в производстве и применении присадок и добавок в маслах, в создании композиций и пакетов присадок в настоящее время в известной степени остаются невостребованными в связи с общим спадом производства, наводнением рынка импортными маслами и присадками. Заводы, производящие масла и присадки, добавки начинают постепенно приобретать интерес к созданию масел и пакетов на основе отечественных присадок, поскольку масла высших групп, которые можно изготавливать с импортными пакетами присадок, не находят сбыта из-за несоответствия отечественной техники уровню, достигнутому ведущими странами мира.

  1. А. Д. Макаров. Нефтегазовое товароведение. Москва — 2006.
  2. Топлива, смазочные материалы, технические жидкости. Ассортимент и применение: Справочник / И. Г. Анисимов, К. М. Бадыштова, С. А. Бнатов и др. /Под ред. В. М. Школьникова. М.: Изд. центр «Техинформ», 1999. — 596 с.
  3. Гнатченко И. И. и др. Автомобильные масла, смазки, присадки: Справочное пособие. — М.: ООО «Издательство АСТ»; СПб.: ООО «Издательство «Полигон», 2000. — 360 с.
  4. Синельников А. С., Балабанов В. И. Автомобильные масла. Краткий справочник. — М.: ЗАО «КЖИ «За рулем», 2005. — 176 с.

Основные термины (генерируются автоматически): масло, свойство, присадок, смазывающая способность, поверхность, смазочное масло, большая мера, изнашивание деталей, смазочный материал, физическая адсорбция.

Основные физико-химические свойства смазочного материала

Основные физико-химические свойства смазочного материала

Используемые ныне технологии обработки материалов на мощных станках дают возможность проводить интенсивную резку, прокатку, штамповку, сверление и прочие процедуры.

Резка металла всегда сопровождается трениями и деформациями, что повышает температуру и давление в зонах соприкосновения металла. Стабилизировать состояние зоны обработки возможно при помощи смазочно-охлаждающих жидкостей (СОЖ). Именно они дают возможность снизить износ станков и автомобилей.

Какими физико-химическими свойствами обладают СОЖ?

Для каждого типа смазочного вещества есть определенные эксплуатационные характеристики. Мы расскажем об основных свойствах СОЖ:

  • Кинематическая вязкость. Речь идет о текучести масел при нормальной и при высокой температуре. Также характеристика определяется как отношение динамической вязкости к плотности вещества.
  • Объемная масса вещества или плотность. Параметр определяется отношением массы к объему и измеряется в кг/м3. С учетом плотности удается выявить химическую природу вещества. Благодаря показателю можно получить данные о вязкости СОЖ.
  • Температура вспышки. Данный показатель говорит о температуре, при которой смазочные вещества начинают выделять углеводороды в количестве достаточном для возгорания от огня. Измеряют параметр в градусах Цельсия. С его учетом удается судить о воспламеняемости и пожаробезопасности веществ.
  • Температура застывания. Речь идет о температуре, при которой жидкость находится в неизменном состоянии во время наклона. Данный показатель не считают величиной, способной сказать о минимальной температуре СОЖ в системе смазывания. Для расчета температуры текучести следует использовать диаграмму зависимости вязкости и температуры конкретного вещества.
  • Пенетрация. Под данным свойством СОЖ понимают меру измерения консистенции смазки или, иначе говоря, ее «густоту». Определить показатель удается при помощи специального теста. Для этого в емкость с веществом опускают специальный металлический конус для измерения уровня его проникновения. Чем глубже конус опускается в вещество, тем более жидким оно является. Измеряется показатель в мм.

Классификации масел по API и АСЕА

АСЕА – это э характеристика, которая была разработана многими производителями автомобилей. В основе классификации находятся эксплуатационные свойства масел, основанные на ряде проведенных испытаний, а также на всевозможных опытах для разных конструктивных методик и решений.

С учетом АСЕА масла характеризуются по своему назначению:

  • A – масла предназначены для использования в бензиновых двигателях;
  • B – масла можно использовать для дизельных двигателей легковых автомобилей;
  • E – масла подходят для дизельных двигателей грузовых машин.

Также в каждой категории присутствует цифра, которая говорит об условиях для работы двигателя. Чем цифра выше, тем выше качество масла.

Не менее распространенным свойством СОЖ является и классификация по API. Она говорит о делении трансмиссионных масел с учетом уровня противозадирных свойств.

Есть две стандартные характеристики: API SJ – для бензиновых двигателей, а также API CE – для дизельных двигателей.

Также существует новый ряд высококачественных маловязких масел, которые обозначаются EC. Расход масла в данном случае значительно ниже.

Какие свойства смазочных масел обеспечивают надежную работу механизмов

«Топлива, смазочные материалы ,технические жидкости». Ассортимент и применение
(Интернет-версия справочника, Под ред. Школьникова В.М.)

Свойства масел и методы их оценки

Моюще-диспергирующие свойства характеризуют способность масла обеспечивать необходимую чистоту деталей двигателя, поддерживать продукты окисления и загрязнения во взвешенном состоянии. Чем выше моюще-диспергирующие свойства масла, тем больше нерастворимых веществ — продуктов старения может удерживаться в работающем масле без выпадения в осадок, тем меньше лакообразных отложений и нагаров образуется на горячих деталях, тем выше может быть допустимая температура деталей (степень форсирования двигателя). Кроме концентрации моюще-диспергирующих присадок на чистоту двигателя существенно влияет эффективность используемых присадок, их правильное сочетание с другими компонентами композиции, а также приемистость базового масла. В композициях моторных масел в качестве моющих присадок используют сульфонаты, алкилфеноляты, алкилсалицилаты и фосфонаты кальция или магния и реже (по экологическим соображениям) бария, а также рациональные сочетания этих зольных присадок друг с другом и с беззольными дисперсантами-присадками, снижающими, главным образом, склонность масла к образованию низкотемпературных отложений и скорость загрязнения фильтров тонкой очистки масла. Модифицированные термостойкие беззольные дисперсанты способствуют и уменьшению лако- и нагарообразования на поршнях.
Механизм действия моющих присадок объясняют их адсорбцией на поверхности нерастворимых в масле частиц. В результате на каждой частице образуется оболочка из обращенных в объем масла углеводородных радикалов. Она препятствует коагуляции частиц загрязнений, их соприкосновению друг с другом. Полярные молекулы присадок образуют двойной электрический слой, придающий одноименные заряды частицам, на которых они адсорбировались. Благодаря этому частицы отталкиваются и вероятность их объединения в крупные агрегаты уменьшается.
При работе двигателей на топливах с повышенным содержанием серы моющие присадки, придающие маслу щелочность, препятствуют образованию отложений на деталях двигателей также и путем нейтрализации кислот, образующихся из продуктов сгорания топлива.
Металлсодержащие моющие присадки повышают зольность масла, что может привести к образованию зольных отложений в камере сгорания, замыканию электродов свечей зажигания, преждевременному воспламенению рабочей смеси, прогару выпускных клапанов, снижению детонационной стойкости топлива, абразивному изнашиванию. Поэтому сульфатную зольность моторных масел ограничивают верхним пределом. Ее допустимое значение зависит от типа и конструкции двигателя, расхода масла на угар, условий эксплуатации, в частности, от вида применяемого топлива. Наименее зольные масла необходимы для смазывания двухтактных бензиновых двигателей и двигателей, работающих на газе. Наибольшую зольность имеют высокощелочные цилиндровые масла.
Моющие свойства моторных масел в лабораторных условиях определяют на модельной установке ПЗВ, представляющей собой малоразмерный одноцилиндровый двигатель с электроприводом и электронагревателями. Стендовые моторные испытания для оценки моющих свойств проводят либо в полноразмерных двигателях, либо в одноцилиндровых моторных установках по стандартным методикам. Критериями оценки моющих свойств служит чистота поршня, масляных фильтров, роторов центрифуг, подвижность поршневых колец.

Антиокислительные свойства в значительной степени определяют стойкость масла к старению. Условия работы моторных масел в двигателях настолько жестки, что предотвратить их окисление полностью не представляется возможным. Соответствующей очисткой базовых масел от нежелательных соединений, присутствующих в сырье, использованием синтетических базовых компонентов, а также введением эффективных антиокислительных присадок можно значительно затормозить процессы окисления масла, которые приводят к росту его вязкости и коррозионности, склонности к образованию отложений, загрязнению масляных фильтров и другим неблагоприятным последствиям (затруднение холодного пуска, ухудшение прокачиваемости масла).
Окисление масла в двигателе наиболее интенсивно происходит в тонких пленках масла на поверхностях деталей, нагревающихся до высокой температуры и соприкасающихся с горячими газами (поршень, цилиндр, поршневые кольца, направляющие и стебли клапанов). В объеме масло окисляется менее интенсивно, так как в поддоне картера, радиаторе, маслопроводах температура ниже и поверхность контакта масла с окисляющей газовой средой меньше. Во внутренних полостях двигателя, заполненных масляным туманом, окисление более интенсивно.
На скорость и глубину окислительных процессов значительно влияют попадающие в масло продукты неполного сгорания топлива. Они проникают в масло вместе с газами, прорывающимися из надпоршневого пространства в картер. Ускоряют окисление масла частицы металлов и загрязнений неорганического происхождения, которые накапливаются в масле в результате изнашивания деталей двигателя, недостаточной очистки всасываемого воздуха, нейтрализации присадками неорганических кислот, а также металлорганические соединения меди, железа и других металлов, образующиеся в результате коррозии деталей двигателя или взаимодействия частиц изношенного металла с органическими кислотами. Все эти вещества — катализаторы окисления.
Стойкость моторных масел к окислению повышают введением в их состав антиокислительных присадок. Наилучший антиокислительный эффект достигается при введении в масло присадок, обладающих различным механизмом действия. В качестве антиокислительных присадок к моторным маслам применяют диалкил- и диарилдитиофосфаты цинка, которые улучшают также антикоррозионные и противоизносные свойства. Их часто комбинируют друг с другом и с беззольными антиокислителями. К числу последних относят пространственно затрудненные фенолы, ароматические амины, беззольные дитиофосфаты и др. Довольно энергичными антиокислителями являются некоторые моюще- диспергирующие присадки, в частности алкилсалицилатные и алкилфенольные.
При длительной работе масла в двигателе интенсивный рост вязкости, обусловленный окислением, начинается после практически полного истощения антиокислительных присадок. В стандартах и технических условиях на моторные масла их стойкость к окислению косвенно характеризуется индукционным периодом осадкообразования (окисление по методу ГОСТ 11063–77 при 200 °С). При моторных испытаниях антиокислительные свойства масел оценивают по увеличению их вязкости за время работы в двигателе установки ИКМ (ГОСТ 20457–75) или Petter W-1.

Противоизносные свойства моторного масла зависят от химического состава и полярности базового масла, состава композиции присадок и вязкостно-температурной характеристики масла с присадками, которая в основном предопределяет температурные пределы его применимости (защита деталей от износа при пуске двигателя, при максимальных нагрузках и температурах окружающей среды). Особенно важны эффективная вязкость масла при температуре 130–180 °С и градиенте скорости сдвига 105–107 с-1, зависимость вязкости от давления, свойства граничных слоев и способность химически модифицировать поверхностные слои сопряженных трущихся деталей.
При работе на топливах с повышенным или высоким содержанием серы, а также в условиях, способствующих образованию азотной кислоты из продуктов сгорания (газовые двигатели, дизели с высоким наддувом), важнейшей характеристикой способности масла предотвращать коррозионный износ поршневых колец и цилиндров является его нейтрализующая способность, показателем которой в нормативной документации служит щелочное число. Различные узлы и детали двигателей (за исключением крейц-копфных дизелей, имеющих две автономные смазочные системы) смазываются обычно одним маслом, а условия трения, изнашивания и режим смазки существенно различны. Подшипники коленчатого вала, поршневые кольца в сопряжении с цилиндром работают преимущественно в условиях гидродинамической смазки. Зубчатые колеса привода агрегатов, масляных насосов и детали механизма привода клапанов работают в условиях эластогидродинамической смазки. Вблизи мертвых точек жидкостное трение поршневых колец по стенке цилиндра переходит в граничное.
Множественность факторов, влияющих на износ деталей двигателей, принципиальные различия режимов трения и изнашивания узлов затрудняют оптимизацию противоизносных свойств моторных масел. Придание маслу достаточной нейтрализующей способности и введение в его состав дитиофосфатов цинка часто оказывается достаточным для предотвращения коррозионно-механического изнашивания и модифицирования поверхностей деталей тяжело нагруженных сопряжений во избежание задиров или усталостного выкрашивания. Однако тенденция к применению маловязких масел для достижения экономии топлива и ограничение поступления масла к верхней части цилиндра для уменьшения расхода на угар требуют улучшения противоизносных свойств масел при граничной смазке. Это достигается введением специальных противоизносных присадок, содержащих серу, фосфор, галогены, бор, а также введением беззольных дисперсантов, содержащих противоизносные фрагменты.
Большое влияние на износ оказывает наличие в масле абразивных загрязнений. Их наличие в свежем масле не допускается, а масло, работающее в двигателе, должно подвергаться очистке в фильтрах, центрифугах, сепараторах. Уменьшению вредного действия абразивных частиц способствуют высокие диспергирующие свойства масла.
Трибологические характеристики, определяемые на четырехшариковой машине трения (ЧШМ) по ГОСТ 9490–75, нормированы стандартами и техническими условиями на многие моторные масла для контроля процесса производства. Однако непосредственную связь между оценкой противоизносных и противозадирных свойств на машине трения и фактическими противоизносными свойствами моторных масел в реальных условиях применения установить не всегда возможно. При моторных испытаниях противоизносные свойства масел оценивают по потере массы поршневых колец, задиру или питтингу кулачков и толкателей, линейному износу этих деталей и цилиндров, состоянию поверхностей трения.

Антикоррозионные свойства моторных масел зависят от состава базовых компонентов, концентрации и эффективности антикоррозионных, антиокислительных присадок и деактиваторов металлов. В процессе старения коррозионность моторных масел возрастает. Более склонны к увеличению коррозионности масла из малосернистых нефтей с высоким содержанием парафиновых углеводородов, образующих в процессах окисления агрессивные органические кислоты, которые взаимодействуют с цветными металлами и их сплавами.
Антикоррозионные присадки защищают антифрикционные материалы (свинцовистую бронзу), образуя на их поверхности прочную защитную пленку. Антиокислители препятствуют образованию агрессивных кислот. Иногда необходимо вводить в моторные масла присадки-деактиваторы, образующие хелатные соединения с медью, предохраняющие поверхность от коррозионного разрушения.
Антикоррозионные присадки типа дитиофосфатов цинка, применяемые в большинстве моторных масел, не защищают от коррозии сплавы на основе серебра и фосфористые бронзы, а при высокой температуре активно способствуют их коррозии. В двигателях, в которых используют такие антифрикционные материалы, необходимо использовать специальные масла, не содержащие дитиофосфатов цинка.
В лабораторных условиях антикоррозионные свойства моторных масел оценивают по методу ГОСТ 20502–75 по потере массы свинцовых пластин за 10 или 25 ч испытания при температуре 140 °С. При моторных испытаниях антикоррозионные свойства масел оценивают по потере массы вкладышей шатунных подшипников полноразмерных двигателей или одноцилиндровых установок ИКМ или Petter W-1, а также по состоянию их поверхностей трения (цвет, натиры, следы коррозии).

Вязкостно-температурные свойства — одна из важнейших характеристик моторного масла. От этих свойств зависит диапазон температуры окружающей среды, в котором данное масло обеспечивает пуск двигателя без предварительного подогрева, беспрепятственное прокачивание масла насосом по смазочной системе, надежное смазывание и охлаждение деталей двигателя при наибольших допустимых нагрузках и температуре окружающей среды. Даже в умеренных климатических условиях диапазон изменения температуры масла от холодного пуска зимой до максимального прогрева в подшипниках коленчатого вала или в зоне поршневых колец составляет до 180–190 °С. Вязкость минеральных масел в интервале температур от -30 до +150 °С изменяется в тысячи раз. Летние масла, имеющие достаточную вязкость при высокой температуре, обеспечивают пуск двигателя при температуре окружающей среды около 0 °С. Зимние масла, обеспечивающие холодный пуск при отрицательных температурах, имеют недостаточную вязкость при высокой температуре. Таким образом, сезонные масла независимо от их наработки (пробега автомобиля) необходимо менять дважды в год. Это усложняет и удорожает эксплуатацию двигателей. Проблема решена созданием всесезонных масел, загущенных полимерными присадками (полиметакрилаты, сополимеры олефинов, полиизобутилены, гидрированные сополимеры стирола с диенами и др.).
Вязкостно-температурные свойства загущенных масел таковы, что при отрицательных температурах они подобны зимним, а в области высоких температур — летним. Вязкостные присадки относительно мало повышают вязкость базового масла при низкой температуре, но значительно увеличивают ее при высокой температуре, что обусловлено увеличением объема макрополимерных молекул с повышением температуры и рядом иных эффектов.
В отличие от сезонных, загущенные всезонные масла изменяют вязкость под влиянием не только температуры, но и скорости сдвига, причем это изменение временное. С уменьшением скорости относительного перемещения смазываемых деталей вязкость возрастает, а с увеличением — снижается. Этот эффект больше проявляется при низкой температуре, но сохраняется и при высокой, что имеет два позитивных последствия: снижение вязкости в начале проворачивания холодного двигателя стартером облегчает пуск, а небольшое снижение вязкости масла в зазорах между поверхностями трения деталей прогретого двигателя уменьшает потери энергии на трение и дает экономию топлива.
Характеристиками вязкостно-температурных свойств служат кинематическая вязкость , определяемая в капиллярных вискозиметрах, и динамическая вязкость, измеряемая при различных градиентах скорости сдвига в ротационных вискозиметрах, а также индекс вязкости — безразмерный показатель пологости вязкостно-температурной зависимости, рассчитываемый по значениям кинематической вязкости масла, измеренной при 40 и 100 °С (ГОСТ 25371–82). В нормативной документации на зимние масла иногда нормируют кинематическую вязкость при низких температурах. Индекс вязкости минеральных масел без вязкостных присадок составляет 85–100. Он зависит от углеводородного состава и глубины очистки масляных фракций. Углубление очистки повышает индекс вязкости, но снижает выход рафината.
Синтетические базовые компоненты имеют индекс вязкости 120–150, что дает возможность получать на их основе всесезонные масла с очень широким температурным диапазоном работоспособности.
К низкотемпературным характеристикам масел относят температуру застывания, при которой масло не течет под действием силы тяжести, т.е. теряет текучесть. Она должна быть на 5–7 °С ниже той температуры, при которой масло должно обеспечивать прокачиваемость. В большинстве случаев застывание моторных масел обусловлено образованием в объеме охлаждаемого масла кристаллов парафинов. Требуемая нормативной документацией температура застывания достигается депарафинизацией базовых компонентов и/или введением в состав моторного масла депрессорных присадок (полиметакрилаты, алкилнафталины и др.).

Юридический адрес:
140180, Россия,
Московская обл.,
г. Жуковский,
ул. Мясищева, д.1, помещение 403 Почтовый адрес:
140181, Россия,
Московская обл.,
г. Жуковский,
Главпочтамт
а/я 2229 ООО «ТЗК Туполев Сервис» Офис: 8(498) 479 58 96; Бухгалтерия: 8(498) 479 52 70

Юридический адрес:
140180, Россия,
Московская обл.,
г. Жуковский,
ул. Туполева, корп.89 Почтовый адрес:
140181, Россия,
Московская обл.,
г. Жуковский,
Главпочтамт
а/я 2229

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *