Что такое мегапиксели в камере
Перейти к содержимому

Что такое мегапиксели в камере

  • автор:

Мегапиксели – добро или зло? Что это такое и сколько их должно быть

С момента появления цифровой фототехники между разными производителями идет своеобразная «гонка мегапикселей», когда новая модель фотоаппарата неизменно получает матрицу все большего и большего разрешения. Темпы этой гонки год от года меняются — достаточно долго «вертикальным» пределом для кропнутых зеркалок были 16-18 мегапикселей, но потом в очередной раз в производство были внедрены какие-то инновации и разрешающая способность кропнутых камер подбирается к отметке в 25 мегапикселей. Для начала вспомним, что пиксель — это базовый элемент, точка, одна из тех, из которых формируется цифровое изображение. Этот элемент дискретный и неделимый — нет таких понятий как «миллипиксель» или 0.5 пикселя 🙂 Зато есть понятие мегапиксель, под которым понимается массив пикселей в количестве 1 000 000 штук. К примеру, изображение размером 1000*1000 пикселей — имеет разрешение ровно 1 мегапиксель. В пересчете на качество печати в DPI, 1 мегапиксель эквивалентен отпечатку размером 10*15 сантиметров с хорошим качеством (около 200 DPI — подсчитано калькуляторе DPI). Разрешение первых массовых любительских цифровых камер как раз и было около 1 мегапикселя. Для любительских «фоток» хватало, но для профессионального использования такого разрешения было катастрофически мало. Это стало причиной так называемой «гонки мегапикселей» — явления, когда каждая новая модель фотокамеры имела матрицу большего разрешения, чем предыдущая. Естественно, это сказывалось и на цене — прибавка 1 мегапикселя могла запросто увеличить стоимость камеры в 2 раза! Сейчас же мы наблюдаем ситуацию — заявленное разрешение матриц любительских зеркалок стало таким, что дает возможность делать отпечатки приемлемого качества форматом чуть ли не А1! В то время как большинство фотолюбителей редко печатают фотографии больше чем 20 на 30 см, для этого достаточно 3-4 мегапикселей. Или вообще фотографии не печатают, а смотрят на мониторе или телевизоре. Если вы фотографии не печатаете, а только смотрите на экране смартфона, планшета, монитора, телевизора — расклад такой. Для просмотра фотографий (без масштабирования!) на мониторе Full HD достаточно разрешения 2 мегапикселя, на телевизоре 4K — 8 мегапикселей, 8К — 33 мегапикселя.

Стоит ли менять старый фотоаппарат на такой же по функциям, но «более мегапиксельный?»

Возьмем для примера два фотоаппарата — простой любительский Canon EOS 1100D и более продвинутый Canon EOS 700D. У первого разрешение матрицы 12 мегапикселей, у второго — 18 мегапикселей. Разница — в 1.5 раза. Первая мысль, возникающая у многих фотолюбителей примерно такая — «Поменяв 1100Д на 700Д я буду получать в 1.5 раза лучшую детализацию! Теперь на фотографиях будут видны абсолютно все нюансы — мне этого так не хватало с моей старой камерой!». Эта установка активно поддерживается рекламщиками. Фотолюбитель, убедивший себя, в том что ему совершенно необходима новая камера, разбивает копилку и идет в магазин. А давайте возьмем калькулятор и посчитаем, какой реальный прирост разрешения фотографии будет при переходе с 12 на 18 мегапикселей. 18-мегапиксельная матрица того же 700D дает изображение шириной 5184 пикселя, в то время как максимальная ширина изображения у 12-мегапиксельного 1100D составляет 4272 пикселя (данные взяты из технических характеристик фотоаппарата). Поделим 5184 на 4272 и получим разницу всего в 21%. То есть, при увеличении разрешения матрицы в 1.5 раза, фотография увеличивается в размерах всего в 1.21 раза. Если изобразить это графически, то получится такое сравнение. Разница неожиданно мала! Получается, отличия между 12 и 18 мегапикселями не столь уж и существенны. Вывод — слухи о значимости роста мегапикселей сильно преувеличены. Перейти с 12- на 18-мегапиксельный аппарат (или с 18- на 24-мегапиксельный) только в надежде получить значительный прирост детализации на фотографиях — попасть на удочку маркетологов.

Рост мегапикселей в ряде случаев снижает резкость даже при использовании хорошей оптики!

Казалось бы — это вообще похоже на бред! Однако, не будем торопиться с выводами. Логично, что при росте мегапикселей с сохраненем размеров сенсора уменьшается площадь каждого отдельно взятого пикселя. Возможно, вы знаете, что уменьшение площади пикселя приводит к снижению его реальной чувствительности, а, следовательно, к росту уровня шумов (чисто теоретически). Однако, благодаря постоянному совершенствованию технологий и алгоритмов обработки данных, новые матрицы, даже несмотря на более мелкие пиксели дают менее шумную картинку, чем их «крупнопиксельные» предшественники. Но есть еще один нюанс, о котором часто забывают. Я уже рассказывал о такой вещи как дифракция. Не вдаваясь в подробности, напомню, что это свойство волны огибать препятствие, чуть меняя при этом направление. При прохождении пучка света через узкое отверстие, этот пучок имеет свойство как-бы распыляться, подобно спрею (да простят меня физики за такое сравнение 🙂 В нашем случае в качестве отверстия выступает апертура (диафрагменное отверстие). Чем сильнее зажата диафрагма, тем под большим углом «распыляется спрей». Угол очень небольшой (гораздо меньше, чем на картинке), но учитывая микроскопический размер пикселей, он дает о себе знать. В итоге, «идеально четкая» точка после прохождения апертуры превращается в размытое пятнышко. Чем меньше диаметр апертуры, тем заметнее это размытие. А теперь давайте к этой картинке добавим небольшой кусочек матрицы с пикселями и попробуем приблизительно представить, как будет выглядеть эта «идеально четкая» точка на фотографии.

Невысокое разрешение, крупные пиксели Высокое разрешение, мелкие пиксели

Что из этого получилось? Будем считать, что пиксели имеют квадратную форму.

Диаметр пятна размытия оказался меньше размера пикселя и «идеально четкая» точка получилась размером в 1 пиксель (это идеальный вариант). Диаметр пятна размытия оказался больше размера пикселя и его края попали на соседние пиксели, в итоге на картинке «идеально четкая» точка оказалась размытым пятнышком.

Естественно, приведенные иллюстрации не претендуют на абсолютную точность, не учтено множество нюансов — хотя бы то, что при формировании изображения происходит интерполяция (сглаживание) соседних пикселей. Суть в том, чтобы показать, что при уменьшении площади пикселя уменьшается рабочий диапазон диафрагменных чисел. Если у матрицы очень большое разрешение, не стоит слишком сильно зажимать диафрагму объектива, поскольку это приведет к появлению на фотографиях дифракционного размытия. Матрицы с малым количеством мегапикселей позволяют зажимать диафрагму чуть ли не до f/22 и особого размытия при этом не наблюдается.

Сглаживающий фильтр — для чего он нужен и почему в современных камерах его нет?

Низкочастотный фильтр, он же сглаживающий, он же low pass — это стеклышко перед матрицей, которое чуть «замыливает» картинку. Для чего он это делает? Главное назначение сглаживающего фильтра — борьба с муаром. Муар — это характерный рисунок, появляющийся при наложении друг на друга мелких ритмичных текстур. Его можно увидеть, посмотрев на сложенный в несколько слоев тюль на окне. Что-то наподобие этого: Точно такой же эффект получается при съемке мелких текстур, когда размер ячейки сопоставим с размером пикселя изображения — их рисунок как бы накладывается на «рисунок» из пикселей матрицы, в итоге получаем муар на картинке: Приведенный пример — кадр из видео в масштабе 200%. Рубашка имела узор из очень мелких клеточек. Чтобы подавить муар, нужно чуть размыть картинку. При этом будет страдать детализация, но муар уменьшится (или исчезнет совсем). Сглаживающий фильтр выполняет именно эту роль. Насколько эффективно он это делает? Давайте попробуем смоделировать работу сглаживающего фильтра и сделать размытие картинки до полного исчезновения муара. Согласитесь, такое качество никого не устроит. Именно поэтому сглаживающий фильтр не убирает муар полностью, а лишь чуть его ослабляет, но при этом снижает микроконтраст картинки. В большинстве современных камер сглаживающий фильтр отсутствует, его заменили программные алгоритмы подавления муара, благо вычислительная мощность современных процессоров позволяет это сделать. Алгоритмы могут применяться не всегда, а лишь тогда, когда надо, то есть камеры с матрицами без сглаживающего фильтра дают лучшую детализацию при том же количестве мегапикселей, в этом их плюс. Отрицательный момент — «программное» решение почти всегда хуже «аппаратного». В тех 5% случаев, когда действительно нужно побороть муар, камеры со сглаживающим фильтром проявят себя лучше.

Купили современную тушку? Позаботьтесь о хорошей оптике!

Разрешение матриц большинства современных любительских фотоаппаратов со сменной оптикой находится между 20 (Micro 4/3) и 60+ мегапикселями (полный кадр). Со временем этот диапазон неизбежно будет смещаться в сторону больших значений. Как правило, при этом совершенствуется и оптика. Современные китовые объективы хоть и существенно прибавили в качестве, но все же являются компромиссными вариантами. Прорисовать картинку во всех нюансах для запечатления на условной 30-мегапиксельной матрице они способны, но в узком диапазоне настроек, например, только в диапазоне 28-35 мм при диафрагме 8. Если вы ищете бескомпромиссный вариант, вам потребуется качественная и, соответственно, дорогая оптика. Стоимость объектива, схожего с китовым по функциональности, но имеющего лучшую разрешающую способность, в разы превосходит стоимость китового объектива, а чаще всего — и самого аппарата. Кстати, не факт, что старый профессиональный объектив будет гарантированно «прорисовывать» картинку. Объектив Canon EF 24-105mm 1:4L на старой 13-мегапиксельной камере Canon EOS 5D давал замечательную по резкости картинку. Но стоило его повесить на современную камеру Canon EOS R, все стало не так хорошо. Для новых камер лучше покупать именно современную оптику.

Смартфон с 48, 64, 100, 200+ мегапикселями — хорошо это или плохо?

Матрица смартфона по размеру сопоставима с матрицей компактного фотоаппарата (цифромыльницы). До недавнего времени разрешение камер смартфонов не превышало 12, ну максимум 16 мегапикселей. Но в определенный момент появился смартфон с 40+ мегапикселями (Nokia Lumia 1020), а еще спустя какое-то время в рекламе смартфонов из Китая замелькали цифры 48, 64 и даже 108 мегапикселей! Неужели произошла революция в «матрицестроении», причем только в мобильном? И да, и нет. Матрица из 48+ мегапикселей не имела бы смысла, если бы не возросшая производительность процессоров смартфонов. Учитывая технологические достижения последних лет, сделать матрицу размером 1/2″ разрешением 48 или 64 мегапикселя не оказалось проблемой. Другое дело — из-за крайне низкой реальной чувствительности отдельно взятого пикселя такие матрицы крайне слабо проявляли себя при съемке с плохим освещением. И тут пришло спасение в виде алгоритмов обработки, объединяющих группы из 4 соседних пикселей в один «суперпиксель» и это, как ни странно, дало положительный результат. Таким образом с матрицы на 48 мегапикселей снималась 12-мегапиксельная картинка приемлемого качества. 108-мегапиксельные матрицы также на выходе дают 12-мегапиксельную картинку, но у них «суперпиксели» формируются из групп по 9 «обычных» пикселей (3*3). С другой стороны, зачем объединять мелкие пиксели в группы вместо того, чтобы сделать «честные» 12 мегапикселей? Если вы знакомы с основами статистики, то известно, что наиболее точные измерения получаются в виде усреднения значений выборки, нежели из одиночных значений. Здесь тот же самый принцип — матрица размером 3*3 пикселя дает выборку из 9 значений, таким образом погрешность измерений будет меньше, чем при считывании информации с одного «крупного» пикселя. Дальше она отправляется на программную обработку, в результате которой формируется файл изображения размером 12 мегапикселей. Ну и с точки зрения маркетинга, 108 мегапикселей — это очень круто! У смартфонов также имеется возможность снимать фото в полном разрешении. И вот в это случае наступает правда жизни — при ярком солнечном освещении детализация картинки действительно неплохая (если оптика у смартфона нормальная), но стоит чуть стемнеть, детализация фотографии существенно снижается. В свое время я экспериментировал со смартфоном Xiaomi Mi 9T Pro (48 мегапикселей) — результаты можно посмотреть здесь: /article168.html. Если не охота переходить по ссылке, расклад примерно такой: 1. Так выглядит 100% кроп с 12 мегапиксельной фотографии на смартфон 2. Так выглядит 100% кроп с 12-мегапиксельной полнокадровой зеркалки Canon EOS 5D 3. Так выглядит 100% кроп с 48-мегапиксельной фотографии на смартфон.

Так сколько же должно быть мегапикселей в фотоаппарате?

  • Для аппаратов со сменной оптикой с китовым объективом — 20 мегапикселей. При большем разрешении матрицы сужается «рабочий» диапазон фокусных расстояний и диафрагм. Хотите получать максимально детализированное изображение — старайтесь не снимать на «крайних» фокусных расстояниях, устанавливайте диафрагму 8.
  • Для аппаратов со сменной оптикой с фиксами или профессиональными зумами такого явного ограничения нет, главное, чтобы объектив смог прорисовать все эти мегапиксели. И еще при росте мегапикселей снижается максимальное «рабочее» диафрагменное число. Старайтесь не снимать в обычных условиях с диафрагмой больше 11-13 — будет заметно снижение резкости из-за дифракционного размытия.
  • Для компактных камер и смартфонов разумный предел — 10-12 мегапикселей. Все что больше — либо маркетинговый ход, либо искусственно раздутое разрешение, которое в итоге трансформируется в ту же 12-мегапиксельную картинку.

Что означает количество мегапикселей и разрешение

Разрешающая способность камеры видеонаблюдения определяется количеством пикселей ее матрицы, а для аналоговых видеокамер она указывается в ТВЛ (телевизионных линиях). Эта величина определяется с помощью значения чередующихся черно — белых полос, сколько видеокамера может воспроизвести по вертикали или горизонтали.

Условно АНАЛОГОВЫЕ КАМЕРЫ можно подразделить на устройства стандартного (380-420 ТВЛ, что соответствует примерно 500 пикселям по горизонтали) и высокого (560-600 ТВЛ — около 750 пикселей) разрешения. Сейчас производятся видеокамеры с разрешением порядка 1000 ТВЛ.

Разрешение IP КАМЕР определяется как произведение количества пикселей по горизонтали и вертикали матрицы. Измеряется оно в мегапикселях.

Мегапиксель (мегапиксел, Мп, англ. megapixel) — один миллион (1 000 000) пикселей, формирующих изображение. В мегапикселях измеряется одна из важных характеристик цифрового фотопппарата — разрешение матрицы. Также в мегапикселях измеряют размер созданного или отсканированного изображения, чтобы соотнести его размер с размером известного снимка.

pict2

Что такое Мегапиксели?

Мегапиксели — не самое главное в снимке или фотоаппарате. Важным является то, как формируется каждый пиксель. В случае цифрового фотоаппарата физический размер матрицы играет ключевую роль: чем он меньше при одинаковом количестве мегапикселей, тем более «шумным» будет снимок.

Что такое Разрешение?

Разреше́ние — величина, определяющая количество точек (элементов растрового изображения) на единицу площади (или единицу длины). Термин обычно применяется к изображениям в цифровой форме, хотя его можно применить, например, для описания уровня грануляции фотоплёнки, фотобумаги или иного физического носителя. Более высокое разрешение (больше элементов) типично обеспечивает более точные представления оригинала. Другой важной характеристикой изображения является разрядность цветовой палитры.

pict3

Кроме того, в области любительских фотоаппаратов постоянно растущее разрешение не вызывает рост и без того малого физического размера светочувствительной матрицы. Это приводит к сильному повышению уровня шумов на снимках. Программное обеспечение «мыльниц» подавляет возникшие шумы, что, в свою очередь, приводит к «замыленности» снимка. Во время просмотра такого снимка в масштабе 100 % качество снимка очень невысокое. Нечёткость и «замыленность» несколько ослабляются при уменьшении масштаба просмотра (или печати). При этом теряется необходимость в большом количестве мегапикселей. К тому же разные матрицы, построенные по одному и тому же принципу, обладают различными недостатками. Также современные сканеры при максимальном разрешении по разрешающей способности сильно превосходят пару «плёнка-объектив» и отсканированные при высоком разрешении кадры не будут иметь ожидаемого количества деталей.

Таким образом, количество мегапикселей не является главным показателем качества аппарата.

pict4

Печать фотографий

От количества мегапикселей зависит размер и резрешение фотоснимков.

pict 5

Если пренебрегать размером фотографий и печатать маленькие фотографии на большой бумаге, то изображение будет получаться менее резким и на контрастных границах будет заметна ступенчатость.

При печати до формата 15×20 для безупречной резкости требуется качество печати 300 ppi (для снимка 10×15 (4×6 дюймов) это 1200×1800 точек). На формате А4 уже не требуется такого разрешения, так как снимок будет рассматриваться с бо́льшего расстояния.

Какое имеет отношение разрешения, для фильмов и кинематографа (информация для любителей снимать видео на камеры Hikvision)

В отличие от обозначения разрешение в телевидении, отталкивающегося от количества строк и, соответственно, количества элементов изображения по вертикали, в кинематографе разрешающая способность отсчитывается по длинной стороне кадра.

pic5

Такой принцип выбран из-за того, что в цифровом кино, в отличие от телевидения высокой четкости, существуют различные стандарты соотношения сторон экрана. В этом случае удобно отталкиваться от горизонтального разрешения, которое остается постоянным, в то время, как вертикальное изменяется в соответствии с высотой кадра. Разрешению 4K соответствует несколько различных размеров изображения в пикселях.

Влияние мегапикселей в камере смартфона на качество фотографий

фотосъёмка на смартфон.jpgМегапикселем (МП) называется единица измерения, формирующая изображение (1 мегапиксель = 1 млн.пикселей). Любой снимок, создаваемый фотокамерой, состоит из точек, расположенных по вертикали и горизонтали (пиксели). В мегапикселях же формируется значение фотокамеры, которое образовывается путём умножения количества точек по горизонтали и вертикали в пределах изображения. Например, 3000 точек умножаем на 4000 точек и получаем цифру в 12 миллионов, что соответствует 12 МП. Таким образом, от мегапикселей зависит чёткость изображения, в частности, чем больше мегапикселей, тем чётче детали при увеличении изображения. Если важна чёткость снимков и качественные фотографии, то стоит выбирать смартфон, имеющий более 8 МП. Современные смартфоны Хайскрин имеют достаточно высокое разрешение фотокамеры, обычно свыше 12 МП При этом, многие отмечают ситуации, при которых фотокамеры, имеющие одинаковое количество мегапикселей, снимают в разном качестве или, к примеру, камера на 8МП снимает не лучше, чем камера с 5МП. Этому есть простое объяснение — по-мимо количества мегапикселей на фотографию влияют ещё некоторые факторы, ключевые из них: матрица, стабилизация, апертура, обработка изображения ПО.
фотокамера мобильного телефона.jpgМатрица При создании фотокадра на матрицу передаётся свет, который она преобразует в электронный сигнал, после чего процессор обрабатывает данные и воспроизводит фотографию. Чем больше матрица, тем больше пикселей на ней находится, а чем больше пикселей будет, тем больше света матрица захватит. Чем больше света будет захвачено, тем точнее и качественнее получится фотоснимок. То есть, более крупная матрица создаст более лучший снимок, чем матрица меньшего размера (смартфон с камерой 8МП создаст более лучший кадр, если его матрица будет больше по размеру, чем иной аппарат с 8МП, имеющий меньшую матрицу).
Стабилизация изображения Существует две системы стабилизации изображения: цифровая и оптическая. Как можно догадаться, стабилизация не даёт снимку «размыться», она направлена на фиксацию кадра и устранения колебаний смартфона при съёмке. В подавляющем большинстве смартфонов, в том числе премиум-класса, установлена цифровая (электронная) стабилизация изображения. Оптическая стабилизация качественнее, но встречается редко и чаще в дорогостоящих моделях.
Апертура Апертура по своей сути представляет отверстие в объективе, через которое проходит свет. Всё довольно просто, чем больше само отверстие, через которое проходит свет для создания снимка, тем меньше показатель апертуры. А, чем больше света уловит фотокамера в момент срабатывания, тем более чёткий снимок будет передан. Итак, для лучших снимков стоит делать выбор меньших показателей апертуры. К примеру, Айфон 6 имеет показатель f/2.2, а некоторые не самые дешёвые модели Самсунг могут похвастаться цифрами в f/1.7
ПО смартфона Программное обеспечение (ПО) смартфона тоже имеет роль. Для обычного пользователя наглядным примером обработки изображений ПО смартфона являются оттенки передаваемых цветов. Впрочем, восприятие пользователем созданного кадра субъективная вещь. Так, при равных условиях в разных телефонах, одинаковый кадр в одной модели будет отображён в более тёплых тонах, в другой же в более холодных, один аппарат приблизит цвета к натуральным, а другой создаст цвета более яркими и насыщенными. Если вы заядлый фотолюбитель, то, понять насколько именно вас устраивает обработка изображений в конкретном смартфоне возможно только посмотрев на снимки лично, и сделав свои выводы. По возможности, на ключевые параметры рекомендуем обращать внимание в дополнение к количеству мегапикселей. Если же возможности ознакомиться более детально со свойствами интересуемого аппарата нет, но хочется смартфон с хорошей камерой, то стоит стоит ориентироваться на то, чтобы камера имела значение от 13МП. Ну а, в дополнение, в интернете всегда можно найти фотообзоры нужной модели с примерами снимков, сделанных на её фотокамеру, и оценить насколько лично вас устраивают сделанные телефоном кадры.
Каталог смартфонов Хайскрин

Сколько нужно мегапикселей в камере?

Светочувствительный элемент фотокамеры

Разрешающая способность камеры определяется количеством светочувствительных элементов камеры, которые формируют изображение и измеряется в мегапикселях (мегапиксель, Мп, англ. megapixel) — один миллион (1 000 000).

Мегапиксели — не самое главное в снимке или фотоаппарате. Важным является то, как формируется каждый пиксель изображения. В случае цифрового фотоаппарата физический размер сенсора играет ключевую роль: чем он меньше при одинаковом количестве мегапикселей, тем меньше света зарегистрирую сенсоры.

Стоит учитывать, что чем меньше размер матрицы, тем меньше размер каждого отдельного пикселя, а, в свою очередь, влияет на:

  • Количество информации, которое регистрирует сенсор. Чем большая площадь пикселя, тем больше света на него попадает и полезный сигнал фиксируется точнее.
  • Светочувствительность у крупных пикселей выше.
  • Динамический диапазон матрицы. Точнее передаются градации полезного сигнала.
  • Соотношение сигнал/шум. Чем сильнее полезный сигнал, тем меньше шум.
  • При меньших размерах пикселя раньше проявляется влияние дифракции на изображение.
  • При меньших размерах пикселя уровень детализации изображения выше.

Среди современных камер можно найти модели оснащены как крошечными сенсорами размером 4х5.4 мм, так и повторяющими пленочный стандарт «полнокадровыми» сенсорами 36х24 мм. Между этими двумя типоразмерами находится целый ряд других сенсоров, некоторые из которых имеют специальное обозначение, которое соответствует так называемому «кроп-фактору».

Название сенсора Размеры сенсора, мм Кроп-фактор Соотношение площадей, %
«Полный кадр» 36.0×24.0 1.0 100%
APS-H 28.7×19.1 1.26 60%
APS-C Nikon 23.7×15.6 1.52 43%
APS-C Canon 22.2×14.8 1.62 38%
4/3 17.3×13.0 2.0 26%
2/3″ 8.8×6.6 3.9 7%
1/1.8″ 7.2×5.3 4.9 4%
1/2.5″ 5.8×4.3 6.0 3%
1/2.7″ 5.4×4.0 6.4 3%
1/3.2″ 4.5×3.4 7.6 2%

В области любительских фотоаппаратов постоянно растущее разрешение не вызывает рост и без того малого физического размера светочувствительной матрицы. Это приводит к сильному повышению уровня шумов на снимках, которые подавляются программно, что может сказаться на «замыленности» снимка.

Вывод

Чтобы понять, какое количество мегапикселей в камере нас будет устраивать, стоит определиться с конечным применением фотографий. Будут ли они печататься на больших форматах или только публиковаться в соцсетях? А может быть, демонстрироваться на цифровых проекторах или рассматриваться на экранах? При этом не стоит забывать, что снимок сделанный в 36Мп и уменьшенный до 16Мп наверняка будет выглядеть более чётким, поскольку уменьшение изображения (децимация) в определённой степени нейтрализует шумы и потерю резкости.

Влияние мегапикселей на печать
Размер печати, (см) Приемлемо 150ppi, (Мп) Предпочтительно 300ppi, (Мп)
6×9 480×640 (0.3Мп) 768×1024 (0.8Мп)
9×12 768×1024 (0.8Мп) 1200×1600 (1,9Мп)
10×15 768×1024(0.8Мп) 1200×1712 (2Мп)
13×18 864×1152 (1Мп) 1536×2048 (3.15Мп)
20×30 1200×1600 (1.9Мп) 3840×2160 (8.3Мп)

Если пренебрегать размером фотографий и печатать маленькие фотографии на большой бумаге, то изображение будет получаться менее резким и на контрастных границах будет заметна ступенчатость.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *