На что распадаются атомы
Перейти к содержимому

На что распадаются атомы

  • автор:

На что распадаются атомы

Радиоактивностью называется способность атомного ядра самопроизвольно распадаться с испусканием частиц.
Радиоактивный распад ядра возможен тогда, когда он энергетически выгоден, т.е. сопровождается выделением энергии. Условием этого является превышение массы M исходного ядра суммы масс mi продуктов распада, которому соответствует неравенство M > ∑ m i . Это условие является необходимым, но не всегда достаточным. Распад может быть запрещен другими законами сохранения – сохранения момента количества движения, электрического заряда, барионного заряда и т.д.
Радиоактивный распад характеризуется временем жизни радиоактивного изотопа, типом испускаемых частиц, их энергиями.
Основными видами радиоактивного распада являются:

  • α-распад – испускание атомным ядром α-частицы;
  • β-распад – испускание атомным ядром электрона и антинейтрино, позитрона и нейтрино, поглощение ядром атомного электрона с испусканием нейтрино;
  • γ-распад – испускание атомным ядром γ-квантов;
  • спонтанное деление – распад атомного ядра на два осколка сравнимой массы.

К более редким видам радиоактивного распада относятся процессы испускания ядром двух электронов, одного или двух протонов, а также кластеров – лёгких ядер от 12 C до 32 S . Во всех видах радиоактивности (кроме γ-распада) изменяется состав ядра – число протонов Z , массовое
число A или и то и другое одновременно.
На характеристики радиоактивного распада существенное влияние оказывает тип взаимодействия, вызывающего распад ядра.
Для того чтобы происходил α -распад, необходимо, чтобы масса исходного ядра M ( A , Z ) была больше суммы масс конечного ядра M ( A -4, Z- 2) и α -частицы m α :

M ( A , Z ) > M ( A -4, Z- 2) + m α.

Q α = [ M ( A , Z ) — M ( A -4, Z -2) — m α] c 2 .

Энергия, освобождающаяся при α-распаде, обычно заключена в интервале 2 – 9 МэВ, и основная её часть ( » 98%) уносится αчастицей в виде её кинетической энергии. Оставшиеся 2% — это кинетическая энергия конечного ядра. Периоды полураспада α-излучателей изменяются в очень широких пределах: от 5·10 — 8 с до 8·10 18 лет. Столь широкий разброс периодов полураспада, а также огромные значения этих периодов для многих α-радиоактивных ядер объясняется тем, что α-частица не может «мгновенно» покинуть ядро, несмотря на то, что это энергетически выгодно. Для того чтобы покинуть ядро, α-частица должна преодолеть потенциальный барьер (рис. 11).

Главной особенностью β -распада является то, что он обусловлен слабым взаимодействием. Бета-распад — процесс внутринуклонный. В ядре распадается одиночный нуклон. Происходящие при этом внутри ядра превращения нуклонов и энергетические условия соответствующего типа βраспада выглядят так (масса νe , e считае тся нулевой):

  • β — — распад (n ® p + e — + e ), M(A,Z) > M(A, Z + 1) + me,
  • β + — распад (p ® n + e + + νe ), M(A,Z) > M(A,Z — 1) + me,
  • e- захват (p + e — ® n + νe ), M(A,Z) + me > M(A, Z — 1).

При e -захвате ядро поглощает один из электронов атомной оболочки (обычно из ближайшей к нему K -оболочки), испуская нейтрино.

Рис. 11. Потенциальная энергия α-частицы.

Потенциальный барьер на границе ядра образуется за счет потенциальной энергии электростатического отталкивания α-частицы и конечного ядра и сил притяжения между нуклонами.
Для четно-четных изотопов зависимость периода полураспада от энергии α -распада Q α хорошо описывается эмпирическим законом ГейгераНеттола

где A и B — константы слабо зависящие от Z.

С учетом заряда дочернего ядра Z связь между периодом полураспада T1/2 и энергией альфа- распада Qα может быть представлено в виде (B.A. Brown, Phys. Rev. c46, 811 (1992))

где период полураспада T1/2 выражен в секундах, а Q α — в МэВ.
На рисунке показаны экспериментальные значения периодов полураспада для 119 альфа -радиоактивных четно-четных ядер (Z от 74 до 106) и их описание с помощью этого соотношения.
Для нечетно-четных, четно-нечетных и нечетно-нечетных ядер общая тенденция сохраняется, но их периоды полураспада в 2 — 1000 раз больше, чем для четно-четных ядер с данными Z и Qα.

Если α -распад наблюдается только в случае самых тяжелых и некоторых редкоземельных ядер, то β ‑радиоактивные ядра гораздо более многочисленны и имеются во всей области значений массового числа A , начиная от единицы (свободный нейтрон) и кончая массовыми числами самых тяжелых ядер. Для того чтобы выполнялись законы сохранения энергии и углового момента при распаде нуклона внутри ядра, последнее должно перестраиваться. Поэтому период полураспада, а также другие характеристики β ‑распада зависят от того, насколько сложна эта перестройка. В результате периоды β ‑распада варьируются почти в столь же широких пределах, как и периоды α -распада. Они лежат в интервале 10 -6 с — 10 17 лет.
Изменения состояний атомных ядер, сопровождающиеся испусканием или поглощением γ-квантов, называют γ-переходами. Периоды полураспада для γ-переходов изменяются от 10 -19 с до 10 10 лет. Энергии γ-переходов изменяются от нескольких кэВ до нескольких МэВ.
Полный момент количества движения фотона J называется мультипольностью фотона . Значение спина фотона J = 1, а поэтому, полный момент J, уносимый фотоном, может принимать целочисленные значения 1, 2, . (кроме нуля).
Различают электрические (EJ) и магнитные (MJ) переходы. Е1 — электрический дипольный переход, М1 — магнитный дипольный переход, Е2 — электрический квадрупольный переход и т.д.
Для электрических переходов четность определяется соотношением P = (–1) J , для магнитных переходов — соотношением P = (–1) J+1 .
В случае γ-переходов большой диапазон периодов полураспада объясняется сильной зависимостью вероятности γ-перехода от энергии и мультипольности переходов. Период полураспада T1/2 γ-перехода зависит от мультипольности перехода J и приведенной длины волны излучения .

Для электрических переходов EJ – ,
для магнитных переходов MJ – ,

где R — радиус ядра.

Рис. 12. β- и γ-переходы в изотопах 130 I и 130 Xe .

На рис. 12 приведена схема нижних уровней и γ‑переходов между ними в изотопах 130 I и 130 Xe . Уровни ядра 130 Xe заселяются в результате β — -распада основного состояния ядра 130 I , имеющего спин и четность J P = 5 + , на возбужденное состояние J P = 5 + ядра 130 Xe с энергий 1.95 МэВ. При β — -распаде ядро 130 I превращается в ядро 130 Xe .
В основном состоянии ядро ксенона имеет характеристики J P = 0 + . Поэтому распад на этот уровень является запрещенным β-переходом 4-го порядка и практически не происходит. Первый возбужденный уровень ядра 130 Xe с энергией 0.54 имеет характеристики J P = 2 + , а второй возбужденный уровень с энергией 1.21 МэВ — J P = 4 + . β-распады на них также подавлены, хотя и не так сильно, как распад на основное состояние.
β — -распад на уровень ядра 130 Xe , имеющий энергию 1.95 МэВ и характеристики J P = 5 + , является разрешенным. Период полураспада изотопа 130 I равен 12.4 ч.
Ядро 130 Xe , оказавшись в результате β — -распада ядра 130 I в состоянии с энергией 1.95 МэВ, может перейти в основное состояние очень большим числом способов, как в результате непосредственного перехода с испусканием γ‑кванта (показан пунктиром), так и в результате различных каскадов, например, каскада типа 5 + → 2 + → 0 + , в котором первый переход имеет мультипольность M 3, а второй – E 2.
Переход 5 + → 4 + может происходить в результате испускания Е2 и М1 γ-квантов.

Изомеры — долгоживущие возбужденные состояния атомных ядер. Сочетание высокой мультипольности и малой энергии переходов обуславливает существование состояний с большими периодами полураспада, которые могут составлять годы. У изотопа может быть несколько изомерных уровней.
Так, например, в изотопе 179 Hf обнаружено два изомерных состояния (рис. 13): одно (J P = 1/2 — ) — с энергией возбуждения 375.03 кэВ и периодом полураспада T1/2 = 18.67 c, второе (J P = 25/2 — ) — с энергией 1105.63 кэВ и T1/2 = 25.1 дня.
Изомерные состояния чаще всего наблюдаются в тех областях N и Z, в которых близко по энергии расположены оболочечные состояния, сильно различающиеся значениями спинов.
Причиной ядерной изомерии может служить также сильное различие форм ядра в изомерном и основном состояниях.

По мере удаления от долины β-стабильности происходит увеличение энергии β-распада и уменьшение энергии отделения нуклонов. Испускание запаздывающих частиц – двухстадийный процесс. На первой стадии происходит β-распад. При этом дочернее ядро может образоваться в возбужденном состоянии. На второй стадии происходит распад ядра из возбужденного состояния с испусканием нейтронов, протонов и более тяжелых фрагментов. Частицы, испускаемые в таком процессе, называются запаздывающими, так как период полураспада, наблюдаемый в результате регистрации нуклонов или фрагментов, будет определяться временем предшествующего β-распада. На рис. 13 показано испускание запаздывающих протонов ядром 21 Mg .

Рис. 13. Испускание запаздывающих протонов ядром 21 Mg.

Ядро 21 Mg нестабильно и в результате β + -распада превращается в изотоп 21 Na :

21 Mg → 21 Na + e + + ν e ( T1/2 = 0.12 c ).

В том случае, когда ядро 21 Na образуется в состояниях с энергией меньше 2.5 МэВ, в нем происходят γ-переходы в основное состояние. Однако если энергия возбуждения ядра 21 Na превышает 2.5 МэВ, открывается новая возможность. Ядро 21 Na может, испустив протон, превратиться в устойчивый изотоп 20 Ne :

21 Na → 20 Ne + p .

Испускание протона происходит практически мгновенно, после β + -распада ядра 21 Mg ( T1/2 около 10 — 17 с), т. е. наблюдается практически одновременное появление протона и позитрона.

Радиоактивный распад – статистический процесс. Каждое радиоактивное ядро может распасться в любой момент, и закономерности распада атомных ядер наблюдаются только в среднем, в случае распада достаточно большого количества ядер.
Для характеристики скорости (вероятности) радиоактивного распада используются три взаимосвязанные величины − постоянная распада λ, среднее время жизни τ и период полураспада T 1/2.
Постоянная распада
λ − вероятность распада ядра в единицу времени. Если в образце в момент времени t имеется N радиоактивных ядер, то количество ядер dN , распавшихся за время dt , пропорционально N , λи интервалу времени наблюдений dt :

Знак «–» означает, что число радиоактивных ядер в образце в результате распада уменьшается.
Закон радиоактивного распада имеет вид:

N ( t ) = N 0 e — λ t ,

где N 0 – количество радиоактивных ядер в исходный момент времени t = 0. N ( t ) − число радиоактивных ядер, оставшихся в образце к моменту времени t (рис. 14).

Среднее время жизни τ:

Период полураспада T 1/2 – время, за которое первоначальное количество радиоактивных ядер уменьшается в два раза:

Рис. 14. Определение постоянной распада.

Постоянную распада λ определяют, измеряя зависимость числа распадов радиоактивного изотопа от времени. В тех случаях, когда период полураспада составляет от долей секунды до нескольких лет, для определения постоянной распада используется соотношение

Построив зависимость активности источника от времени в полулогарифмическом масштабе lnI(t) по углу наклона прямой к оси t , можно определить величину λ.

Понятие радиоактивности. Виды распада

Это способность ядер атомов различных химических элементов разрушаться, видоизменяться с испусканием атомных и субатомных частиц высоких энергий. При радиоактивных превращениях, в подавляющем большинстве случаев, ядра атомов (а значит, и сами атомы) одних химических элементов превращаются в ядра атомов (в атомы) других химических элементов, либо один изотоп химического элемента превращается в другой изотоп того же элемента.

Атомы, ядра которых подвержены радиоактивному распаду или другим радиоактивным превращениям, называются радиоактивными.

Изотопы

(от греческих слов isos – «равный, одинаковый» и topos – «место»)

Это нуклиды одного химического элемента, т.е. разновидности атомов определенного элемента, имеющие одинаковый атомный номер, но разные массовые числа.

Изотопы обладают ядрами с одинаковым числом протонов и различным числом нейтронов и занимают одно и то же место в периодической системе химических элементов. Различают стабильные изотопы, которые существуют в неизменном виде неопределенно долго, и нестабильные (радиоизотопы), которые со временем распадаются.

Известно около 280 стабильных и более 2000 радиоактивных изотопов у 116 природных и искусственно полученных элементов.

Нуклид (от латинского nucleus – «ядро») – совокупность атомов с определенными значениями заряда ядра и массового числа.

Условные обозначения нуклида: , где X буквенное обозначение элемента, Z число протонов (атомный номер), A сумма числа протонов и нейтронов (массовое число).

Даже у самого первого в таблице Менделеева и самого лёгкого атома – водорода, в ядре которого только один протон (а вокруг него вращается один электрон), имеется три изотопа.

Таблица Менделеева

Радиоактивные превращения

Могут быть естественными, самопроизвольными (спонтанными) и искусственными. Спонтанные радиоактивные превращения – процесс случайный, статистический.

Все радиоактивные превращения сопровождаются, как правило, выделением из ядра атома избытка энергии в виде электромагнитного излучения.

Гамма-излучение – это поток гамма-квантов, обладающих большой энергией и проникающей способностью.

Рентгеновское излучение – это так же поток фотонов – обычно с меньшей энергией. Только «место рождения» рентгеновского излучения не ядро, а электронные оболочки. Основной поток рентгеновского излучения возникает в веществе при прохождении через него «радиоактивных частиц» («радиоактивного излучения» или «ионизирующего излучения»).

Основные разновидности радиоактивных превращений:

  • радиоактивный распад;
  • деление ядер атомов.

Это испускание, выбрасывание с огромными скоростями из ядер атомов «элементарных» (атомных, субатомных) частиц, которые принято называть радиоактивным (ионизирующим) излучением.

При распаде один изотоп данного химического элемента превращается в другой изотоп того же элемента.

Для естественных (природных) радионуклидов основными видами радиоактивного распада являются альфа- и бета-минус-распад.

Названия «альфа» и «бета» были даны Эрнестом Резерфордом в 1900 году при изучении радиоактивных излучений.

Для искусственных (техногенных) радионуклидов, кроме этого, характерны также нейтронный, протонный, позитронный (бета-плюс) и более редкие виды распада и ядерных превращений (мезонный, К-захват, изомерный переход и др.).

Альфа-распад

Это испускание из ядра атома альфа-частицы, которая состоит из 2 протонов и 2 нейтронов.

Альфа-частица имеет массу 4 единицы, заряд +2 и является ядром атома гелия (4He).

Альфа распад

В результате испускания альфа-частицы образуется новый элемент, который в таблице Менделеева расположен на 2 клетки левее, так как количество протонов в ядре, а значит, и заряд ядра, и номер элемента стали на две единицы меньше. А масса образовавшегося изотопа оказывается на 4 единицы меньше.

Альфараспад – это характерный вид радиоактивного распада для естественных радиоактивных элементов шестого и седьмого периодов таблицы Д.И. Менделеева (уран, торий и продукты их распада до висмута включительно) и особенно для искусственных – трансурановых – элементов.

То есть этому виду распада подвержены отдельные изотопы всех тяжёлых элементов, начиная с висмута.

Альфа-распад

Так, например, при альфа-распаде урана всегда образуется торий, при альфа-распаде тория – радий, при распаде радия – радон, затем полоний и наконец – свинец. При этом из конкретного изотопа урана-238 образуется торий-234, затем радий-230, радон-226 и т. д.

Скорость альфа-частицы при вылете из ядра от 12 до 20 тыс. км/сек.

Бета-распад

Бета-распад – наиболее распространённый вид радиоактивного распада (и вообще радиоактивных превращений), особенно среди искусственных радионуклидов.

У каждого химического элемента есть, по крайней мере, один бета-активный, то есть подверженный бета-распаду изотоп.

Пример естественного бета-активного радионуклида – калий-40 (Т1/2=1,3×109 лет), в природной смеси изотопов калия его содержится всего 0,0119%.

Кроме К-40, значимыми естественными бета-активными радионуклидами являются также и все продукты распада урана и тория, т.е. все элементы от таллия до урана.

Бета-распад включает в себя такие виды радиоактивных превращений, как:

  • бета-минус распад;
  • бета-плюс распад;
  • К-захват (электронный захват).

Бета-минус распад – это испускание из ядра бета-минус частицы – электрона, который образовался в результате самопроизвольного превращения одного из нейтронов в протон и электрон.

При этом бета-частица со скоростью до 270 тыс. км/сек (9/10 скорости света) вылетает из ядра. И так как протонов в ядре стало на один больше, то ядро данного элемента превращается в ядро соседнего элемента справа – с большим номером.

Бета минус распад

Бета минус распад

При бета-минус распаде радиоактивный калий-40 превращается в стабильный кальций-40 (стоящий в соседней клетке справа). А радиоактивный кальций-47 – в стоящий справа от него скандий-47 (тоже радиоактивный), который, в свою очередь, также путём бета-минус распада превращается в стабильный титан-47.

Бета-плюс распад – испускание из ядра бета-плюс частицы – позитрона (положительно заряженного «электрона»), который образовался в результате самопроизвольного превращения одного из протонов в нейтрон и позитрон.

В результате этого (так как протонов стало меньше) данный элемент превращается в соседний слева в таблице Менделеева.

Бета распад

Например, при бета-плюс распаде радиоактивный изотоп магния магний-23 превращается в стабильный изотоп натрия (стоящего слева) – натрий-23, а радиоактивный изотоп европия – европий-150 превращается в стабильный изотоп самария – самарий-150.

Нейтронный распад

Нейтронный распад – испускание из ядра атома нейтрона. Характерен для нуклидов искусственного происхождения.

При испускании нейтрона один изотоп данного химического элемента превращается в другой, с меньшим весом. Так, например, при нейтронном распаде радиоактивный изотоп лития – литий-9 превращается в литий-8, радиоактивный гелий-5 – в стабильный гелий-4.

Нейтронный распад

Если стабильный изотоп йода – йод-127 облучать гамма-квантами, то он становится радиоактивным, выбрасывает нейтрон и превращается в другой, тоже радиоактивный изотоп – йод-126. Это пример искусственного нейтронного распада.

«Цепочки» распада

Цепочки распада

В результате радиоактивных превращений могут образовываться изотопы других химических элементов или того же элемента, которые сами могут быть радиоактивными элементами.

Т.е. распад некоего исходного радиоактивного изотопа может привести к некоторому количеству последовательных радио-активных превращений различных изотопов разных химических элементов, образуя т. н. «цепочки распада».

Например, торий-234, образующийся при альфа-распаде урана-238 превращается в протактиний-234, который в свою очередь снова в уран, но уже в другой изотоп – уран-234.

Заканчиваются же все эти альфа и бета-минус переходы образованием стабильного свинца-206. А уран-234 альфа-распадом – опять в торий (торий-230). Далее торий-230 путём альфа-распада – в радий-226, радий – в радон.

Деление ядер атомов

Это самопроизвольное, или под действием нейтронов, раскалывание ядра атома на 2 примерно равные части, на два «осколка».

При делении вылетают 2-3 лишних нейтрона и выделяется избыток энергии в виде гамма-квантов, гораздо больший, чем при радиоактивном распаде.

Если на один акт радиоактивного распада обычно приходится один гамма-квант, то на 1 акт деления приходится 8 -10 гамма-квантов!

Кроме того, разлетающиеся осколки обладают большой кинетической энергией (скоростью), которая переходит в тепловую.

Вылетевшие нейтроны могут вызвать деление двух-трёх аналогичных ядер, если те окажутся поблизости и если нейтроны попадут в них.

Таким образом, появляется возможность осуществления разветвляющейся, ускоряющейся цепной реакции деления ядер атомов с выделением огромного количества энергии.

Цепная реакция деления

Если позволить цепной реакции развиваться бесконтрольно, то произойдёт атомный (ядерный) взрыв.

Цепная реакция

Если цепную реакцию держать под контролем, управлять её развитием, не давать ускоряться и постоянно отводить выделяющуюся энергию (тепло), то эту энергию («атомную энергию») можно использовать для получения электроэнергии. Это осуществляется в атомных реакторах, на атомных электростанциях.

Характеристики радиоактивных превращений

Период полураспада (T1/2) – время, в течение которого половина радиоактивных атомов распадается и их количество уменьшается в 2 раза.

Периоды полураспада у всех радионуклидов разные – от долей секунды (короткоживущие радионуклиды) до миллиардов лет (долгоживущие).

Активность – это количество актов распада (в общем случае актов радиоактивных, ядерных превращений) в единицу времени (как правило, в секунду). Единицами измерения активности являются беккерель и кюри.

Беккерель (Бк) – это один акт распада в секунду (1 расп./сек).

Кюри (Ки) – 3,7×1010 Бк (расп./сек).

Единица возникла исторически: такой активностью обладает 1 грамм радия-226 в равновесии с дочерними продуктами распада. Именно с радием-226 долгие годы работали лауреаты Нобелевской премии французские учёные супруги Пьер Кюри и Мария Склодовская-Кюри.

Закон радиоактивного распада

Изменение активности нуклида в источнике с течением времени зависит от периода полураспада данного нуклида по экспоненциальному закону:

Aи (t) = Aи (0) × exp (-0,693 t / T1/2),

где Aи (0) – исходная активность нуклида;
Aи (t) – активность спустя время t;

T1/2 – период полураспада нуклида.

Зависимость между массой радионуклида (без учета массы неактивного изотопа) и его активностью выражается следующим соотношением:

Зависимость между массой радионуклида

Зависимость между массой радионуклида

где mи – масса радионуклида, г;

  • T1/2 – период полураспада радионуклида, с;
  • Aи – активность радионуклида, Бк;
  • А – атомная масса радионуклида.

Проникающая способность радиоактивного излучения.

Пробег альфа-частиц зависит от начальной энергии и обычно колеблется в пределах от 3-х до 7 (редко до 13) см в воздухе, а в плотных средах составляет сотые доли мм (в стекле – 0,04 мм).

Альфа-излучение не пробивает лист бумаги и кожу человека. Из-за своей массы и заряда альфа-частицы обладают наибольшей ионизирующей способностью, они разрушают всё на своём пути, поэтому альфа-активные радионуклиды являются наиболее опасными для человека и животных при попадании внутрь.

Пробег бета-частиц в веществе из-за малой массы (~ в 7000 раз

Меньше массы альфа-частицы), заряда и размеров значительно больше. При этом путь бета-частицы в веществе не является прямолинейным. Проникающая способность также зависит от энергии.

Проникающая способность бета-частиц, образовавшихся при радиоактивном распаде, в воздухе достигает 2÷3 м, в воде и других жидкостях измеряется сантиметрами, в твёрдых телах – долями см.

В ткани организма бета-излучение проникает на глубину 1÷2 см.

Кратность ослабления n- и гамма-излучений.

Наиболее проникающими видами излучения являются нейтронное и гамма-излучение. Их пробег в воздухе может достигать десятков и сотен метров (также в зависимости от энергии), но при меньшей ионизирующей способности.

В качестве защиты от n- и гамма-излучения применяют толстые слои из бетона, свинца, стали и т. п. и речь ведут уже о кратности ослабления.

По отношению к изотопу кобальта-60 (Е = 1,17 и 1,33 Мэв) для 10-кратного ослабления гамма-излучения требуется защита из:

  • свинца толщиной порядка 5 см;
  • бетона около 33 см;
  • воды – 70 см.

Для 100-кратного ослабления гамма-излучения требуется защита из свинца толщиной 9,5 см; бетона – 55 см; воды – 115 см.

Единицы измерения в дозиметрии

Доза (от греческого – «доля, порция») облучения.

Экспозиционная доза (для рентгеновского и гамма-излучения) – определяется по ионизации воздуха.

Единица измерения в системе СИ – «кулон на кг» (Кл/кг) – это такая экспозиционная доза рентгеновского или гамма-излучения, при создании которой в 1 кг сухого воздуха образуется заряд ионов одного знака, равный 1 Кл.

Внесистемной единицей измерения является «рентген».

1 Р = 2,58×10-4 Кл/кг.

По определению 1 рентген (1Р) – это такая экспозиционная доза при поглощении которой в 1 см3 сухого воздуха образуется 2,08×109 пар ионов.

Связь между двумя этими единицами следующая:

1 Кл/кг = 3,68 ·103 Р.

Экспозиционной дозе соответствует поглощенная доза в воздухе 0,88 рад.

Доза

Поглощённая доза – энергия ионизирующего излучения, поглощенная единичной массой вещества.

Под энергией излучения, переданной веществу, понимается разность между суммарной кинетической энергией всех частиц и фотонов, попавших в рассматриваемый объем вещества, и суммарной кинетической энергией всех частиц и фотонов, покидающих этот объем. Следовательно, поглощенная доза учитывает всю энергию ионизирующего излучения, оставленную в пределах этого объема, независимо от того, на что эта энергия потрачена.

Единицы измерения поглощенной дозы:

Грэй (Гр) – единица поглощённой дозы в системе единиц СИ. Соответствует энергии излучения в 1 Дж, поглощённой 1 кг вещества.

Рад – внесистемная единица поглощённой дозы. Соответствует энергии излучения 100 эрг, поглощённой веществом массой 1 грамм.

1 рад = 100 эрг/г = 0,01 Дж/кг = 0,01 Гр.

Биологический эффект при одинаковой поглощенной дозе оказывается различным для разных видов излучения.

Например, при одинаковой поглощенной дозе альфа-излучение оказывается гораздо опаснее, чем фотонное или бета-излучение. Это связано с тем, что альфа-частицы создают на пути своего пробега в биологической ткани более плотную ионизацию, концентрируя таким образом вредное воздействие на организм в определенном органе. При этом весь организм испытывает на себе значительно большее угнетающее действие излучения.

Следовательно, для создания одинакового биологического эффекта при облучении тяжелыми заряженными частицами необходима меньшая поглощенная доза, чем при облучении легкими частицами или фотонами.

Эквивалентная доза – произведение поглощенной дозы на коэффициент качества излучения.

Единицы измерения эквивалентной дозы:

Зиверт (Зв) – это единица измерения эквивалентной дозы, любого вида излучения, которое создает такой же биологический эффект, как и поглощенная доза в 1 Гр рентгеновского или гамма-излучения.

Следовательно, 1 Зв = 1 Дж/кг.

Бэр (внесистемная единица) – это такое количество энергии ионизирующего излучения, поглощенное 1 кг биологической ткани, при котором наблюдается тот же биологический эффект, что и при поглощенной дозе 1 рад рентгеновского или гамма-излучения.

1 бэр = 0,01 Зв = 100 эрг/г.

Наименование «бэр» образовано по первым буквам словосочетания «биологический эквивалент рентгена».

До недавнего времени при расчёте эквивалентной дозы использовались «коэффициенты качества излучения» (К) – поправочные коэффициенты, учитывающие различное влияние на биологические объекты (различную способность повреждать ткани организма) разных излучений при одной и той же поглощённой дозе.

Сейчас эти коэффициенты в Нормах радиационной безопасности (НРБ-99) назвали – «взвешивающие коэффициенты для отдельных видов излучения при расчёте эквивалентной дозы (WR)».

Их значения составляют соответственно:

  • рентгеновское, гамма, бета-излучение, электроны и позитроны – 1;
  • протоны с Е более 2 Мэв – 5;
  • нейтроны с Е менее 10 кэв) – 5;
  • нейтроны с Е от 10 кэв до 100 кэв – 10;
  • альфа-частицы, осколки деления, тяжёлые ядра – 20 и т. д.

Эффективная эквивалентная доза – эквивалентная доза, рассчитанная с учётом разной чувствительности различных тканей организма к облучению; равна эквивалентной дозе, полученной конкретным органом, тканью (с учётом их веса), умноженной на соответствующий «коэффициент радиационного риска».

Эти коэффициенты используются в радиационной защите для учёта различной чувствительности разных органов и тканей в возникновению стохастических эффектов от воздействия излучения.

В НРБ-99 их называют «взвешивающими коэффициентами для тканей и органов при расчёте эффективной дозы» .

Для организма в целом этот коэффициент принят равным 1, а для некоторых органов имеет следующие значения:

  • костный мозг (красный) – 0,12; Ÿ гонады (яичники, семенники) – 0,20;
  • щитовидная железа – 0,05; Ÿ кожа – 0,01 и т. д.
  • лёгкие, желудок, толстый кишечник – 0,12.

Для оценки полной эффективной эквивалентной дозы, полученной человеком, рассчитывают и суммируют указанные дозы для всех органов.

Для измерения эквивалентной и эффективной эквивалентной доз в системе СИ используется та же единица – Зиверт (Зв).

1 Зв равен эквивалентной дозе, при которой произведение вели-чины поглощённой дозы в Грэях (в биологической ткани) на взвешивающие коэффициенты будет равно 1 Дж/кг.

Иными словами, это такая поглощённая доза, при которой в 1 кг вещества выделяется энергия в 1 Дж.

Внесистемная единица – Бэр.

Взаимосвязь между единицами измерения:

1 Зв = 1 Гр * К = 1 Дж/кг * К = 100 рад * К = 100 бэр

При К=1 (для рентгеновского, гамма-, бета-излучений, электронов и позитронов) 1 Зв соответствует поглощённой дозе в 1 Гр:

1 Зв = 1 Гр = 1 Дж/кг = 100 рад = 100 бэр.

Ещё в 50-х годах было установлено, что если при экспозиционной дозе в 1 рентген воздух поглощает приблизительно столько же энергии, что и биологическая ткань.

Поэтому оказывается, что при оценке доз можно считать (с минимальной погрешностью), что экспозиционная доза в 1 рентген для биологической ткани соответствует (эквивалентна) поглощённой дозе в 1 рад и эквивалентной дозе в 1 бэр (при К=1), то есть, грубо говоря, что 1 Р, 1 рад и 1 бэр – это одно и то же.

При экспозиционной дозе 12 мкР/час за год получаем дозу 1 мЗв.

Кроме того, для оценки воздействия ИИ используют понятия:

Мощность дозы – доза, полученная за единицу времени (сек., час).

Фон – мощность экспозиционной дозы ионизирующего излучения в данном месте.

Естественный фон – мощность экспозиционной дозы ионизирующего излучения, создаваемая всеми природными источниками ИИ.

Источники поступления радионуклидов в окружающую среду

1. Естественные радионуклиды, которые сохранились до нашего времени с момента их образования (возможно, со времени образования солнечной системы или Вселенной), так как у них велики периоды полураспада, а значит, велико время жизни.

2. Радионуклиды осколочного происхождения, которые обра-зуются в результате деления ядер атомов. Образуются в ядерных реакторах, в которых осуществляется управляемая цепная реакция, а также при испытаниях ядерного оружия (неуправляемая цепная реакция).

3. Радионуклиды активационного происхождения образуются из обычных стабильных изотопов в результате активации, то есть при попадании в ядро стабильного атома субатомной частицы (чаще – нейтрона), в результате чего стабильный атом становится радиоактивным. Получают активацией стабильных изотопов, помещая их в активную зону реактора, либо бомбардировкой стабильного изотопа в ускорителях элементарных частиц протонами, электронами и т.п.

Области применения радионуклидных источников

Источники ИИ находят применение в промышленности, сельском хозяйстве, научных исследованиях и медицине. Только в медицине используются приблизительно сто изотопов для различных медицинских исследований, постановки диагноза, стерилизации и радиотерапии.

Во всем мире во многих лабораториях используются радиоактивные материалы для научных исследований. Термоэлектрические генераторы на радиоизотопах применяются для производства электроэнергии для автономного энергопитания различной аппаратуры в удаленных и труднодоступных районах (радио-и световые маяки, метеостанции).

Повсеместно в промышленности используются приборы, содержащие радиоактивные источники для контроля технологических процессов (плотно-, уровне- и толщиномеры), приборы неразру-шающего контроля (гамма-дефектоскопы), приборы для анализа состава вещества. Излучение используется для повышения размера и качества урожая.

Влияние излучения на организм человека. Эффекты радиации

Радиоактивные частицы, обладая огромной энергией и скоростью, при прохождении через любое вещество сталкиваются с атомами и молекулами этого вещества и приводят к их разрушению, ионизации, к образованию «горячих» ионов и свободных радикалов.

Так как биологические ткани человека на 70% состоят из воды, то в большой степени ионизации подвергается именно вода. Из ионов и свободных радикалов образуются вредные для организма соединения, которые запускают целую цепь последовательных биохимических реакций и постепенно приводят к разрушению клеточных мембран (стенок клеток и других структур).

Радиация по-разному действует на людей в зависимости от пола и возраста, состояния организма, его иммунной системы и т. п., но особенно сильно – на младенцев, детей и подростков. При воздействии радиации скрытый (инкубационный, латентный) период, то есть время задержки до наступления видимого эффекта, может продолжаться годами и даже десятилетиями.

Воздействие радиации на организм человека и биологические объекты вызывает три различных отрицательных эффекта:

  • генетический эффект для наследственных (половых) клеток организма. Он может проявиться и проявляется только в потомстве;
  • генетико-стохастический эффект, проявляющийся для наследственного аппарата соматических клеток – клеток тела. Он проявляется при жизни конкретного человека в виде различных мутаций и заболеваний (в том числе раковых);
  • соматический эффект, а точнее – иммунный. Это ослабление защитных сил, иммунной системы организма за счёт разрушения клеточных мембран и других структур.

Радиоактивность

В природе ядра атомов, составляющие материю, по большей части стабильны. Но есть и нестабильные ядра, у которых наблюдается избыток или недостаток частиц, составляющих атомное ядро (протонов, нейтронов, или и тех, и других), что приводит к трансформации ядра (через распад) в другие ядра (стабильные или нет). Говорят, что такие атомы радиоактивны, так как, преобразовываясь, они выделяют излучение, природа и свойства которого различны (альфа, бета, гамма и другое излучение). Эти радиоактивные атомы называются радиоактивными изотопами или радионуклидами.

Радиоактивность не была изобретена человеком. Она составляет часть природной окружающей среды: и земной поверхности, и горных пород, и атмосферы, и тела человека, и продуктов питания. С момента открытия природной радиоактивности Анри Беккерелем в конце XIX века ее свойства находят применения в различных сферах человеческой деятельности: индустрии, военно-промышленном комплексе, медицине, научных исследованиях и т.д. Уровень радиоактивности измеряется в беккерелях (Бк). Один беккерель соответствует количеству атомов, распавшихся за секунду.

  • Радиоактивность
    • Излучение
    • Уровень активности, период полураспада
    • Как измеряют радиоактивность
    • Природная и искусственная радиоактивность
    • Критерии отнесения твердых, жидких и газообразных отходов к радиоактивным отходам
    • Критерии отнесения радиоактивных отходов к особым или удаляемым РАО
    • Критерии классификации удаляемых радиоактивных отходов
    • Классы РАО

    НО РАО

    © ФГУП «Национальный оператор
    по обращению с радиоактивными отходами»

    119017, Москва,
    ул. Пятницкая, д. 49А, стр. 2

    • О предприятии
    • Радиоактивные отходы
    • СГУК РВ и РАО
    • Пресс-центр
    • Поставщикам
    • Экология
    • Горячая линия
    • Контакты
    • Международная деятельность
    • Устойчивое развитие
    • Подземная исследовательская лаборатория
    • Госкорпорация РОСАТОМ
    • Структура атомной отрасли

    Радиоактивный распад

    Число распадающихся в заданный промежуток времени ядер в образце радиоактивного материала пропорционально общему числу ядер соответствующего радиоактивного элемента в этом образце.

    Большинство атомных ядер нестабильно. Рано или поздно они самопроизвольно (или, как говорят физики, спонтанно) распадаются на более мелкие ядра и элементарные частицы, которые принято называть продуктами распада или дочерними элементами. Распадающиеся частицы принято именовать исходными материалами или родителями. У всех нам хорошо знакомых химических веществ (железо, кислород, кальций и т. п.) имеется хотя бы один стабильный изотоп. (Изотопами называются разновидности химического элемента с одним и тем же числом протонов в ядре — это число протонов соответствует порядковому номеру элемента, — но разным числом нейтронов.) Тот факт, что эти вещества нам хорошо известны, свидетельствует об их стабильности — значит, они живут достаточно долго, чтобы в значительных количествах накапливаться в природных условиях, не распадаясь на составляющие. Но у каждого из природных элементов имеются и нестабильные изотопы — их ядра можно получить в процессе ядерных реакций, но долго они не живут, поскольку быстро распадаются.

    Распад ядер радиоактивных элементов или изотопов может происходить тремя основными путями, и соответствующие реакции ядерного распада названы тремя первыми буквами греческого алфавита. При альфа-распаде выделяется атом гелия, состоящий из двух протонов и двух нейтронов, — его принято называть альфа-частицей. Поскольку альфа-распад влечет за собой понижение числа положительно заряженных протонов в атоме на два, ядро, испустившее альфа-частицу, превращается в ядро элемента, отстоящую на две позиции ниже от нее в периодической системе Менделеева. При бета-распаде ядро испускает электрон, а элемент продвигается на одну позицию вперед по периодической таблице (при этом, по существу, нейтрон превращается в протон с излучением этого самого электрона). Наконец, гамма-распад — это распад ядер с излучением фотонов высоких энергий, которые принято называть гамма-лучами. При этом ядро теряет энергию, но химический элемент не видоизменяется.

    Однако сам по себе факт нестабильности того или иного изотопа химического элемента отнюдь не означает, что, собрав воедино некоторое число ядер этого изотопа, вы получите картину их одномоментного распада. В реальности распад ядра радиоактивного элемента чем-то напоминает процесс жарки кукурузы при изготовлении поп-корна: зерна (нуклоны) отпадают от «початка» (ядра) по одному, в совершенно непредсказуемом порядке, пока не отвалятся все. Закон, описывающий реакцию радиоактивного распада, собственно, только констатирует этот факт: за фиксированный отрезок времени радиоактивное ядро испускает число нуклонов, пропорциональное числу нуклонов, остающихся в его составе. То есть чем больше зерен-нуклонов всё еще остается в «недожаренном» початке-ядре, тем больше их выделится за фиксированный интервал времени «жарки». При переводе этой метафоры на язык математических формул мы получим уравнение, описывающее радиоактивный распад:

    d N = λNdt

    где dN — число нуклонов, испускаемых ядром с общим числом нуклонов N за время dt, а λ — экспериментально определяемая константа радиоактивности исследуемого вещества. Вышеприведенная эмпирическая формула представляет собой линейное дифференциальное уравнение, решением которого является следующая функция, описывающая число нуклонов, остающихся в составе ядра на момент времени t:

    где N 0 — число нуклонов в ядре на начальный момент наблюдения.

    Константа радиоактивности, таким образом, определяет, насколько быстро распадается ядро. Однако физики-экспериментаторы обычно измеряют не ее, а так называемое время полураспада ядра (то есть срок за который исследуемое ядро испускает половину содержащихся в нем нуклонов). У различных изотопов различных радиоактивных веществ время полураспада варьируется (в полном соответствии с теоретическими предсказаниями) от миллиардных долей секунды до миллиардов лет. То есть некоторые ядра живут практически вечно, а некоторые распадаются буквально моментально (тут важно помнить, что по истечении времени полураспада остается половина совокупной массы исходного вещества, по истечении двух сроков полураспада — четверть его массы, по истечении трех сроков полураспада — одна восьмая и т. д.).

    Что касается возникновения радиоактивных элементов, то рождаются они по-разному. В частности, ионосфера (верхний разреженный слой атмосферы) Земли подвергается постоянной бомбардировке космическими лучами, состоящими из частиц с высокими энергиями (см. Элементарные частицы). Под их воздействием долгоживущие атомы и расщепляются на неустойчивые изотопы: в частности, из стабильного азота-14 в земной атмосфере постоянно образуется неустойчивый изотоп углерода-14 с 6 протонами и 8 нейтронами в ядре (см. Радиометрическое датирование).

    Но вышеописанный случай — скорее экзотика. Гораздо чаще радиоактивные элементы образуются в цепи реакций ядерного деления. Так называют череду событий, в ходе которых исходное («материнское») ядро распадается на два «дочерних» (также радиоактивных), те, в свою очередь, — на четыре ядра-«внучки» и т. д. Процесс продолжается до тех пор, пока не будут получены стабильные изотопы. В качестве примера возьмем изотоп урана-238 (92 протона + 146 нейтронов) со временем полураспада около 4,5 млрд лет. Этот период, кстати, приблизительно равен возрасту нашей планеты, что означает, что примерно половина урана-238 из состава первичной материи формирования Земли по-прежнему находится в совокупности элементов земной природы. Уран-238 превращается в торий-234 (90 протонов + 144 нейтрона), время полураспада которого равно 24 суткам. Торий-234 превращается в протактиний-234 (91 протон + 143 нейтрона) со временем полураспада 6 часов — и т. д. После десяти с лишним этапов распада получается, наконец, стабильный изотоп свинца-206.

    О радиоактивном распаде можно говорить много, но особо отметить нужно несколько моментов. Во-первых, даже если мы возьмем в качестве исходного материала чистый образец какого-то одного радиоактивного изотопа, он будет распадаться на разные составляющие, и вскоре мы неизбежно получим целый «букет» различных радиоактивных веществ с различными ядерными массами. Во-вторых, естественные цепочки реакций атомного распада успокаивают нас в том смысле, что радиоактивность — явление природное, существовала она задолго до человека, и не нужно брать грех на душу и обвинять одну только человеческую цивилизацию в том, что на Земле имеется радиационный фон. Уран-238 существовал на Земле с самого ее зарождения, распадался, распадается — и будет распадаться, а атомные электростанции ускоряют этот процесс, фактически, на доли процента; так что никакого особо пагубного влияния дополнительно к тому, что предусмотрено природой, они на нас с вами не оказывают.

    Наконец, неизбежность радиоактивного атомного распада сопряжена как с потенциальными проблемами, так и с потенциальными возможностями для человечества. В частности, в цепи реакций распада ядер урана-238 образуется радон-222 — благородный газ без цвета, запаха и вкуса, не вступающий ни в какие химические реакции, поскольку он не способен образовывать химические связи. Это инертный газ, и он буквально сочится из недр нашей планеты. Обычно он не оказывает на нас никакого действия — просто растворяется в воздухе и остается там в незначительной концентрации, пока не распадется на еще более легкие элементы. Однако если этот безвредный радон будет долго находиться в непроветриваемом помещении, то со временем там начнут накапливаться продукты его распада — а они для здоровья человека вредны (при вдыхании). Вот так мы получаем так называемую «радоновую проблему».

    С другой стороны, радиоактивные свойства химических элементов приносят людям и значительную пользу, если подойти к ним с умом. Радиоактивный фосфор, в частности, теперь вводится в виде инъекций для получения радиографической картины костных переломов. Степень его радиоактивности минимальна и не причиняет вреда здоровью пациента. Поступая в костные ткани организма вместе с обычным фосфором, он излучает достаточно лучей, чтобы зафиксировать их на светочувствительной аппаратуре и получить снимки сломанной кости буквально изнутри. Хирурги, соответственно, получают возможность оперировать сложный перелом не вслепую и наугад, а заранее изучив структуру перелома по таким снимкам. Вообще же, применениям радиографии в науке, технике и медицине несть числа. И все они работают по одному принципу: химические свойства атома (по сути, свойства внешней электронной оболочки) позволяют отнести вещество к определенной химической группе; затем, используя химические свойства этого вещества, атом доставляется «в нужное место», после чего, используя свойство ядер этого элемента к распаду в строгом соответствии с установленным законами физики «графику», регистрируются продукты распада.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *