Какие усилия воспринимают и передают цилиндрические пружины подвески
Перейти к содержимому

Какие усилия воспринимают и передают цилиндрические пружины подвески

  • автор:

Подвеска автомобиля. Виды, устройство и работа подвески

Подвеска является одним из наиболее ответственных узлов автомобиля, определяющим совокупность эксплуатационных свойств — плавность движения, устойчивость и управляемость, среднюю и максимальную скорость, долговечность ряда деталей и узлов. Подвеска вместе с шинами является основным конструктивным элементом, защищающим автомобиль от динамических воздействий со стороны дороги до уровня, приемлемого в соответствии с требованиями нормативных документов и прочности элементов конструкции.

Правильно спроектированная подвеска позволяет снизить расходы на техническое обслуживание и ремонт, расширить эксплуатационные возможности автомобиля. Подвеска обеспечивает упругую связь между несущей системой и колесами автомобиля, передачу сил и моментов, действующих на колесо в площадке контакта с опорной поверхностью, и снижение вибровоздействия и динамических нагрузок на несущую систему.

Подвеска состоит из совокупности конструктивных (функциональных) элементов: направляющего устройства, упругих элементов, демпфирующих элементов (амортизаторов) и стабилизаторов поперечной или продольной устойчивости. Подвеска должна обладать энергоемкостью, исключающей «пробои» при эксплуатационных режимах движения, и обеспечивать соответствие кинематики перемещения колес кинематике перемещения элементов рулевого привода.

Упругие элементы подвески воспринимают и передают на несущую систему (раму) нормальные реакции опорной поверхности и снижают динамические нагрузки. Жесткость упругого элемента Сп влияет на плавность движения, причем снижение жесткости способствует повышению плавности движения.

Направляющее устройство воспринимает действующее на колеса в пятне контакта с опорной поверхностью горизонтальные (продольные и боковые) силы, их моменты и передает на несущую систему автомобиля. Кинематика перемещения колес определяется конструкцией направляющего устройства. По типу направляющего устройства подвески делят на две основные группы: зависимые и независимые.

Демпфирующее устройство (амортизатор) преобразуют механическую энергию колебаний кузова автомобиля в тепловую энергию и излучают ее в окружающую среду. Преобразование энергии колебаний в амортизаторах в основном осуществляется за счёт жидкостного трения.

Стабилизатор поперечной или продольной устойчивости соответственно снижает поперечный крен кузова автомобиля при действии боковых сил или продольный крен при действии на кузов реактивного момента тяговой силы или силы инерции при торможении.

2. Конструкции упругих элементов

Многолистовые рессоры являются наиболее функциональным и простым по конструкции упругим элементом. Одновременно рессоры выполняют функции упругого элемента, направляющего и демпфирующего устройства.

Недостаток листовых рессор — высокая металлоемкость. Энергия упругой деформации (потенциальная энергия деформации), отнесенная к массе, у листовой рессоры в 2… 3 раза меньше, чем у пружин и торсионов. В настоящее время применяют в основном полуэллиптические рессоры, симметричные и несимметричные.

Несимметричные рессоры с более короткой (более жесткой), чем задняя часть длиной передней части позволяют уменьшить «клевки» автомобиля при торможении, частично выполняя, таким образом, и функции стабилизатора продольной устойчивости. Рессора (рис. 1, а) состоит из собранных вместе листов одинаковой ширины, но разной длины.

Кривизна листов увеличивается по мере уменьшения их длины. Толщина и профиль сечения листов (прямоугольный, параболический, трапециевидный) могут быть разными. Их выбор определяется характером распределения напряжений по длине листов и уровнем допустимых напряжений.

В каждом из листов рессоры имеются отверстия для центрального болта, которым листы стягиваются перед установкой. Лист или несколько листов, которыми рессора крепится к несущей системе, называются коренными.

Концы коренных листов дополнительно обрабатываются — формируется ушко (рис. 1, 6) или пробиваются отверстия для установки деталей крепления рессоры к раме (кузову) автомобиля одним из способов: кронштейнов для крепления с помощью пальцев или чашек резиновых опор. Для приближения конструкции рессоры к балке «равного» сопротивления, в которой напряжения изгиба в каждом сечении листов по длине равны, концы остальных листов могут оттягиваться (рис. 1, в) или обрубаться по трапеции.

Многолистовая рессора

Рис. 1. Многолистовая рессора

Малолистовые и однолистовые рессоры (рис. 2) в большей мере, чем многолистовые приближаются к форме балки равного сопротивления. Высота поперечного сечения h листа l рессоры в месте крепления к балке моста 3 с помощью стремянок 2 определяется из условия прочности при заданной нагрузке. При постоянной ширине b листа высота h его сечений по длине листа изменяется по параболе. Толщина концов из легированных сталей: хромомарганцевых — 50ХГ, 50ХГА, кремнемарганцевых 55ГС и кремниевых 60С2.

Малолистовая рессора

Рис. 2. Малолистовая рессора

Долговечность листовых рессор до настоящего времени остается меньшей долговечности других упругих элементов, даже при использовании специальных методов упрочнения металла и обработки поверхности листов. Кроме того, сложность создания независимой рессорной подвески, большая масса неподрессоренных частей и трение между листами рессоры являются причинами снижения показателей плавности движения.

Спиральные пружины (рис. 3) отличаются простотой конструкции и одновременно высокой удельной энергоёмкостью.

Спиральная пружина

Рис. 3. Спиральная пружина

С учетом короткого и простого технологического цикла изготовления, пружины стали наиболее распространёнными упругими элементами в подвесках автомобилей. При создании пружины с переменным шагом витков обеспечивается прогрессивное изменение жесткости пружины. Достоинством такого упругого элемента является компактность, небольшая масса и удобство компоновки деталей подвески. Внутри пружины может быть размещён амортизатор или гидравлическая стойка подвески. Важно обеспечить неподвижность пружин относительно опор, для чего исполнение концов пружин или опорных витков в целом должны отвечать определенным требованиям.

Наименьшую относительную стоимость имеют пружины, концы которых обрезаны под прямым углом и поджаты. Более дорогим вариантом исполнения пружины является поджим и шлифование опорных витков до плоскости. Основное преимущество плоских опорных витков заключается в простоте, а значит легкости изготовления деталей опор пружин. Просты в изготовлении и недороги пружины, концы которых закручены внутрь пружины для образования опорной поверхности. Кроме уменьшения общей длины пружины , они обеспечивают простую установку на опорные поверхности. Недостатком таких пружин является невозможность установки внутрь амортизаторов.

Торсионы , наряду с пружинами и рессорами, широко применяются в качестве упругих элементов подвесок.

Торсион — это вал (стержень), работающий на кручение. Торсионные подвески при равной энергоёмкости обладают существенно меньшей массой упругого элемента по сравнению с рессорой и имеют лучшие компоновочные возможности подвески даже по сравнению с пружинными упругими элементами. Последнее преимущество особенно очевидно при проектировании подвески ведущих колес автомобиля. В подвесках автомобилей применяют торсионные валы с поперечными сечениями , показанными на рис. 4.

В основном сечение торсиона представляет круг или кольцо, в том числе разрезное (рис. 4, а, 6, в). В некоторых конструкциях стержень торсиона составляют из нескольких прутков (рис. 4, г) или полос одинаковой или разной ширины (рис . 4, д, е). Пластинчатые торсионы представляют набор полос равной длины с поперечным сечением, имеющим форму квадрата, в процессе работы подвергаемые закручиванию. Экономически целесообразно изготавливать пластинчатые торсионы из листов с одинаковыми размерами сечений.

Полосы требуемой толщины для наборных пластинчатых торсионов изготавливаются методом проката, что обеспечивает соблюдение жестких требований к точности размеров ширины и высоты профиля. Использование цилиндрических торсионов, имеющих в сечении круг или кольцо, в наибольшей степени соответствует требованиям эффективного использования материала упругого элемента в случае, когда длина стержня не ограничена конструктивным и параметрами.

Сечения торсионов

Рис. 4. Сечения торсионов

Цилиндрические торсионы хорошо работают не только при однократных воздействиях с предельным уровнем напряжений, но при постоянно действующих напряжениях высокого уровня. Это обеспечивается упрочнением и шлифованием поверхности на рабочей длине торсиона. Исполнение концевых участков имеет для цилиндрических торсионов большое значение. Для передачи момента технологически и конструктивно целесообразно изготавливать шлицевые концы с мелким профилем. Такие поверхности могут быть получены накатыванием или нарезанием, что обеспечивает соосность концов торсиона.

Существенным достоинством торсионных подвесок является возможность сравнительно легкой регулировки высоты автомобиля или коррекции крена при неравномерной осадке упругих элементов. Поэтому во многих случаях производители используют относительно сложные конструкции крепления концов торсиона с большим числом деталей, но обеспечивающие бесступенчатое регулирование подвески. Исполнение концевых участков в этих случаях может быть разным, например, с квадратным или шестиугольным сечением.

Резиновые упругие элементы в подвесках автомобилей используются в качестве дополнительных упругих элементов, работающих на сжатие, кручение или сдвиг. Резиновые упругие элементы значительно дешевле и более технологичны в изготовлении, чем любые металлические упругие элементы. Для крепления резиновой рессоры сжатия 2 (рис. 5) используют металлическую втулку 1, устанавливаемую в пресс-форму перед вулканизацией.

Резиновый упругий элемент

Рис. 5. Резиновый упругий элемент

Многие производители автомобилей давно и успешно используют резиновые упругие элементы в конструкциях подвесок автомобилей самого разного назначения в широком диапазоне изменен и я технически допустимой массы.

Достоинством резиновых упругих элементов является прогрессивная характеристика, обеспечивающая существенное увеличение жесткости упругого элемента по мере деформации. Основные ограничения по использованию таких элементов связаны с недостатками, определяемыми качеством исходного материала и технологией изготовления.

Пневматические упругие резина-кордные элементы (рис. 6) используют на транспортных средствах (автобусы, грузовые автомобили, полуприцепы), вес подрессоренных масс которых может значительно меняться.

Пневматический упругий элемент

Рис. 6. Пневматический упругий элемент

Пневматические упругие элементы имеют малый вес, высокую долговечность и прогрессивную нелинейную упругую характеристику. Изготавливаются из двухслойных резино-кордовых оболочек. Для снижения жесткости и уменьшения её изменения при деформации подвески пневматический элемент может дополняться металлическими емкостями, одной или двумя, позиции 1 и 2.

Гидропневматические упругие элементы (рис. 7) отличаются тем, что упругим элементом является камера со сжатым инертным газом, находящимся под большим давлением, а рабочая жидкость передает вертикальную нагрузку.

Гидропневматческий элемент

Рис. 7. Гидропневматческий элемент

Сила нормальной реакции Q от колеса с помощью поршня 4 гидравлической телескопической стойки, рабочей жидкости, заполняющей цилиндр 3, и поршня 2 упругого элемента передается на газ в камере 1. Давление газа в упругом элементе может достигать 20 МПа, что обеспечивает его компактные размеры. Гашение колебаний подрессоренной массы обеспечивается дросселированием жидкости через клапаны 5 и 6.

3. Типы подвесок. Направляющие устройства

Конструкции (типы) подвесок в основном определяются особенностями направляющих устройств и упругих элементов подвески. Наиболее общая классификация предусматривает деление подвесок на два типа по конструкции направляющего устройства: зависимые и независимые, и виду упругого элемента — рессорные, пружинные, пневматические, гидропневматические.

Зависимые подвески применяются в грузовых автомобилях, автобусах, легковых автомобилях. В зависимых подвесках передние или задние колеса связаны общей осью, и колебания одного из них приводят к колебаниям другого, что снижает плавность движения и курсовую устойчивость автомобиля.

Независимые подвески в основном применяются на легковых автомобилях. Направляющее устройство обеспечивает независимое перемещение каждого колеса оси. Плавность движения в этом случае повышается, но кинематика перемещения колес, зависящая от конструкции направляющего устройства, может быть достаточно сложной. Колесо может перемещаться и наклоняется одновременно в продольной и поперечной плоскостях.

Зависимые рессорные подвески грузовых автомобилей передних и задних колес могут отличаться количеством рессор. Конструкция передней подвески с многолистовой полуэллиптической рессорой показана на рис. 8. Передний конец рессоры с помощью отъемного ушка 14 и пальца 16 крепится к кронштейну 1, установленному на раме. Ушко закреплено на коренном листе 3 с помощью болтов, стремянки 2 и накладки 13. Поверхность пальца 16 и втулки 15 смазывается с помощью пресс-масленки 17.

Задний конец рессоры — скользящий, может свободно перемещаться, опираясь на сухарь 20. Боковые усилия воспринимаются пластинами 22,зафиксированными с помощью пальцев 21 и болтов 24. Болт 24 с втулкой 23 удерживает рессору при ходе отбоя. К балке переднего моста рессора крепится с помощью стремянок 12 и кладки 6. С помощью обоймы 4 в накладке 6 установлен буфер хода сжатия 5. Амортизатор 7 крепится к раме и балке моста с помощью пальцев 19. Между пальцами 19, верхней и нижней проушинами амортизатора установлены резиновые втулки 18, зажатые с помощью шайб и гаек.

Передняя рессорная подвеска

Рис. 8. Передняя рессорная подвеска

В задней подвеске (рис. 9) грузовых автомобилей, кроме основной рессоры 31, устанавливается дополнительная рессора 29 (подрессорник). Подрессорник не деформируется при небольшой массе перевозимого груза и включается при увеличении массы груза. Такая конструкция позволяет обеспечить примерно постоянную частоту колебаний несущей системы автомобиля на упругих элементах, т. е. примерно постоянную, независящую от массы груза, плавность движения. Передний и задний концы основной рессоры закреплены подобно креплениям концов передней рессоры (рис. 8).

Подрессорник крепится к балке ведущего моста с помощью стремянок 27, подушки 33, подкладки 34 и накладки 28. Между основной рессорой и дополнительной устанавливаются прокладки 30. Концы дополнительной рессоры свободно скользят по опорным поверхностям металлических сухарей 26, закрепленных на кронштейнах. Кроме описанных способов, применяют другие конструктивные варианты крепления концов рессор (рис. 10). Крепление переднего конца рессоры (рис. 8. 10, а) к кронштейну 1 может быть выполнено с помощью пальца 4 и металлической втулки 7, запрессованной непосредственно в ушко рессоры 2, 3, 6. Смазка пальца осуществляется с помощью пресмасленки 8. Крепление пальца выполнено с помощью клеммового зажима кронштейна, стянутого болтом 5.

Задняя рессорная подвеска

Рис. 9. Задняя рессорная подвеска

Изменение длины рессоры при деформации компенсируется с помощью серьги 9 (рис. 1О, 6), соединяющей ушко заднего конца рессоры с кронштейном.

Крепление концов рессор

Рис. 10. Крепление концов рессор: а — пальцевое; 6 — пальцевое с серьгой; в — пальцевое с резиновыми втулками; г — пальцевое с резиновыми втулками и серьгой

На легковых автомобилях передний и задний концы рессоры (рис. 10, в, г) крепятся к кузову с помощью пальцев 5 и резиновых втулок 4. Кронштейны рессор 1 приклепываются или привариваются к лонжеронам кузова. На один из концов пальца напрессовывается шайба 2, установленная в отверстии щеки кронштейна с натягом. Размер диаметра шайбы 2 обеспечивает монтаж и демонтаж втулок 4.

Предварительное сжатие втулок 4 за счет гайки 6 предотвращает их проворачивание относительно пальца или ушка и износ. Крепление заднего конца рессоры выполнено с помощью серьги 7.

Балансирная подвеска (рис. 11) применяется в трехосных автомобилях для подрессоривания промежуточного (среднего) и заднего ведущих мостов и на двухосных полуприцепах. Кинематика перемещения колес мостов в продольных плоскостях определяется конструкцией направляющего устройства.

Балансирная подвеска. Направляющее устройство

Рис. 11. Балансирная подвеска. Направляющее устройство

К картерам (балка) 1 мостов с каждой стороны приварены кронштейны 2, к которым с помощью шаровых шарниров 3 крепятся нижняя 4 и верхняя 5 продольные штанги (рис. 11). Верхние штанги могу быть установлены под углом к оси автомобиля. Корпус шарнира изготовлен заодно со штангой, шаровые пальцы 6 размещены между сферическими вкладышами 7, а их конические посадочные поверхности фиксируются в конических отверстиях кронштейнов с помощью гаек. Полуэллиптические рессоры 8 балансирной подвески подвижно закреплены на раме автомобиля 9, а их скользящие концы опираются на опоры, установленные внутри кронштейнов 2. К лонжеронам рамы с помощью заклепок крепятся кронштейны 10, рис. 12.

Балансир подвески

Рис. 12. Балансир подвески

На кронштейнах 10 с помощью болтов крепятся кронштейны 11, в которые запрессована ось 12 (ось балансира). На оси балансира на двух подшипниках скольжения 13 установлен башмак 14, который может поворачиваться на оси. От осевого смещения башмак удерживается шайбой 15, гайкой 16 и контргайкой 17. К башмаку 14 с помощью стремянок 18 и накладки 19 закреплена за центральную часть рессора 8. Подшипниковый узел закрыт крышкой 20, внутренняя полость заполняется жидкой смазкой.

В балансирной подвеске рессора воспринимает вертикальные и боковые нагрузки, а горизонтальные силы (тяговая и тормозная) и их реактивные моменты передаются на раму штангами. Конструкция подвески обеспечивает равное распределение нагрузки на мосты за счет их независимого перемещения в вертикальной плоскости при повороте башмака на оси балансира. Возможность перекоса мостов обеспечивается скольжением концов рессор в опорах кронштейнов.

Зависимая подвеска с пневматическими упругими элементами (рис. 13) применяется на грузовых автомобилях, автобусах и полуприцепах в качестве подвески задних (средних и задних) осей колёс.

Зависимая подвеска с пневматическими упругими элементами

Рис. 13. Зависимая подвеска с пневматическими упругими элементами: а — вид сбоку; 6 — вид сверху

Направляющее устройство подвески состоит из двух нижних штанг (рычагов) 1 и двух косых верхних штанг 2, соединяющих мост автомобиля 3 с лонжеронами 4 или кронштейнами 5 несущей системы. Пневматические упругие элементы 6 попарно установлены на кронштейны 7, закрепленные на балке моста.

Регуляторы высоты кузова размещены на несущей системе и тягами 8 соединяются с балкой моста . С каждой стороны подвески установлены по два телескопических амортизатора 9 и буфера хода сжатия-отбоя 10.

Зависимые пружuнные подвески применяются в заднеприводных легковых автомобилях. Конструкция направляющего устройства таких подвесок может быть достаточно сложной. Основными требованиями к кинематике перемещения колес следует считать обеспечение минимально возможных продольных и угловых перемещений ведущих колес, влияющих на динамику трансмиссии. На рис. 14 представлена задняя пружинная зависимая подвеска с гидравлическими амортизаторами и реактивными штангами.

Зависимая пружинная подвеска

Рис. 14. Зависимая пружинная подвеска

Направляющим устройством подвески являются продольные верхние 2 и нижние 3 штанги, и поперечная штанга 8. Задний мост соединен с кузовом автомобиля при помощи четырех продольных и одной поперечной штанги. Для крепления штанг к кронштейнам кузова и кронштейнам ведущего моста 6 , 7, 10 применяются сайлент-блоки 4 и болты 5. Продольные штанги воспринимают продольные силы, поперечная штанга — боковые силы.

Витые цилиндрические пружины 11 воспринимают вертикальную нагрузку. Нижний конец пружины опирается на чашку 14, приваренную к балке моста, верхний на чашку 13 , приваренную к кузову. Амортизатор 15 гасит колебания кузова автомобиля. Для крепления амортизатора применены резинометаллические шарниры. Буфер 12 ограничивает ход сжатия. Буфер 16 крепится к днищу кузова и ограничивает поворот моста под действием реактивного момента тяговых сил. Ход отбоя ограничивается амортизатором.

Полузависимая пружинная подвеска

Рис. 15. Полузависимая пружинная подвеска

Полузавuсимая подвеска (рис. 15) применяется на легковых автомобилях с передним приводом и занимает промежуточное положение между зависимыми и независимыми подвесками. Направляющее устройство состоит из двух продольных рычагов 1, жестко соединенных (сваркой) с балкой 2 П-образноrо сечения. Рычаги имеют площадки с опорами для пружин 3. При различной нагрузке на колеса балка 2 работает на кручение, что обеспечивает разную деформацию пружин 3 и относительно независимое («полунезависимое») вертикальное перемещение колес. Подвеска отличается простотой конструкции, малой неподрессоренной массой и обеспечивает хорошую кинематику перемещения колес.

Независимые подвески применяются преимущественно как передние подвески легковых и грузовых автомобилей. Независимое перемещение колес позволяет снизить динамическое воздействие на раму (кузов) автомобиля, что способствует лучшей плавности движения. В зависимости от конструкции направляющего устройства подвески перемещение колес при колебаниях может совершаться: в продольной плоскости; поперечной плоскости; в продольной и поперечной плоскости. Устойчивость и управляемость автомобилей с независимой подвеской лучше. Конструкции независимых подвесок отличаются по многим признакам, но наиболее значимыми можно считать схему расположения рычагов направляющего устройства и их количества. Известны конструкции подвесок с поперечным и продольным расположением рычагов.

Подвеска на поперечных рычагах с поворотным устройством шкворневого типа (рис. 16), имеет верхние 1 и нижние 2 «трапециевидные» рычаги, установленные поперек автомобиля на продольных осях 3 и 4. Конструкция рычагов обеспечивает передачу на кузов вертикальных, продольных и поперечных сил и их моментов. Упругий элемент — пружина 5 и амортизатор 6 установлены между нижними рычагами и кронштейном 7, закрепленным на балке 8 передней подвески.

Балка 8 с помощью болтов крепится к лонжерону 9 пола кузова. Шкворень 10 установлен в отверстиях проушин стойки 11, неподвижно соединяется с цапфой 12 и вращается в игольчатых подшипниках 13 опор стойки 11. Упарный подшипник 14 уменьшает трение при повороте. Внутренние концы рычагов соединены с осями резинометаллическими шарнирами 15, наружные с помощью резьбовых втулок 16. Нижняя часть пружины опирается на чашку 34, закрепленную на рычагах 2, верхняя на кронштейн 7, закрепленный на балке 8.

Нижний конец амортизатора с помощью сайлент-блока 17 крепится к чашке 34, верхний с помощью резиновых втулок 18 к кронштейну 7. Буферы хода сжатия 32 и отбоя 33 ограничивают деформацию упругого элемента. На поворотной цапфе 28 монтируется тормозной щит 22, ступица 29 с тормозным барабаном 30 и диском колеса 31.

Подвеска на поперечных рычагах с поворотным устройством шкворневого типа

Рис. 16. Подвеска на поперечных рычагах с поворотным устройством шкворневого типа

Подвеска на поперечных рычагах с поворотным устройством бесшкворневого типа (бесшкворневая подвеска) показана на рис. 17.

Бесшкворневая подвеска на поперечных рычагах

Рис. 17. Бесшкворневая подвеска на поперечных рычагах

Направляющий аппарат состоит из верхнего 1 и нижнего 2 трапециевидных рычагов, соединенных с поворотной цапфой (поворотный кулак) 3 с помощью шарниров 4 и 5. Рычаги закреплены и поворачиваются на продольных осях 6 и 7, закрепленных к балке (поперечина) подвески 8, закрепленной на лонжеронах кузова. Крепление внутренних концов рычагов подобно рассмотренным на рис. 14. Пружина 9 нижним концом опирается на специально сформированную поверхность нижнего рычага, верхним концом через резинотканевую шайбу 14 на кронштейн 11 балки 8. Нижний конец амортизатора крепится к нижнему рычагу, верхний к кронштейну 11 балки 8. На поворотной цапфе устанавливается ступица 15 с тормозным барабаном 16. Буфер хода отбоя 12 и сжатия 13 ограничивают перемещение колеса. Бесшкворневые подвески применяются в качестве передних подвесок заднеприводных легковых и легких грузовых автомобилей.

Подвеска «макферсон» (рис. 18) применяется как передняя подвеска большинства переднеприводных автомобилей. Подвеска имеет направляющее устройство, состоящее из поперечно установленных нижних рычагов 1, к которым шарнирно (шарнир 3) крепится поворотная цапфа (поворотный кулак) 2.

Рис. 18. Подвеска «макферсон»

Верхний рычаг 4 поворотного кулака жестко соединяется с корпусом амортизаторной телескопической стойки 5 с помощью штампованного клеммового кронштейна 6. Шток 7 амортизаторной стойки 5 соединен с кузовом автомобиля через резиновую опору 8. В опору установлен подшипник 9, обеспечивающий поворот стойки при повороте управляемых колес. Пружина 10 установлена между опорой 11, приваренной к корпусу стойки и опорой 12, неподвижно закрепленной относительно штока. Буфер хода сжатия 13 ограничивает перемещение колеса вверх, ход отбоя ограничен буфером расположенным в цилиндре амортизаторной стойки.

Продольные силы, действующие на колесо, воспринимают продольно расположенные рычаги стабилизатора поперечной устойчивости, штанга которого крепится к кузову автомобиля. Подвеска обеспечивает удобный привод передних управляемых колес и имеет сравнительно простую конструкцию.

Подвеска на косых рычагах (рис. 19.) отличаются простотой конструкции.

Схема подвески на косых рычагах

Рис. 19. Схема подвески на косых рычагах

С каждой стороны располагается по одному косому рычагу 1, оси поворота 2 которых наклонены в поперечном и продольном направлении. Данная подвеска не обеспечивает относительную стабильность колеи, т.е. чем больше изменяется развал при прохождении поворотов, тем больше расширяется в ходе сжатия колея. Эта подвеска обладает полезными свойствами для задней оси: она препятствует крену авто на торможении, прижимая кузов к земле, кроме того, с ее помощью можно повлиять на характер управляемости — изменять недостаточную поворачиваемость на избыточную (и наоборот).

4. Стабилизатор поперечной устойчивости

Стабилизатор поперечной устойчивости (рис. 20) устанавливается для уменьшения кренов кузова автмобиля при поворотах и устранения бокового раскачивания кузова при прямолиненом движении. Штанга стабилизатора 1 изготавливается из пружинной стали и может иметь

достаточно сложную форму, определяемую компоновочными соображениями.

Стабилизатор поперечной устойчивости

Рис. 20. Стабилизатор поперечной устойчивости: а — схема; 6 — конструкция

Средняя часть штанги при помощи резиновых втулок 2 крепится в кронштейнах 3, приваренных к кузову автомобиля. Концы штанги (рычаги) 4 шарнирно через резиновые втулки 6, 7 и стойки 5 соединены с опорными чашками 8 пружин подвески. При одновременном перемещении колес вверх или вниз штанга 1 поворачивается во втулке, при перемещении колес на разную величину штанга стабилизатора закручивается и на кронштейны (кузов) действуют силы, препятствующие наклону кузова.

5. Гидравлические телескопические амортизаторы

Гидравлические амортизаторы обепечивают гашение колебаний подрессоренной части автомобиля и являются основными конструктивными элементами, влияющими на показатели плавности движения и условия контакта шин с опорной поверхностью. По конструкции амортизаторы делятся на два типа: двухтрубные и однотрубные.

Конструкция однотрубных амортизаторов признана более технологичной, но их эффективность может снижаться за счет упругих составляющих сил, действующих на подрессоренные массы. Двухтрубные амортизаторы этого недостатка не имеют. Как правило, на современных транспортных средствах применяют амортизаторы «двухстороннего» действия , обеспечивающие создание сопротивления и гашение колебаний как при ходе «сжатия », так и ходе «отдачи».

Гидравлический телескопический двухтрубный амортизатор двухстороннего действия (рис. 21) состоит из следующих основных частей: цилиндра 1 с закрепленным в его нижней части корпусом клапана хода сжатия 2; штока 3 с поршнем 4 и направляющей втулкой 5; корпу­са амортизатора 6 .

Гидравлический телескопический двухтрубный амортизатор

Рис. 21. Гидравлический телескопический двухтрубный амортизатор

Проушина 7 корпуса 6 соединяется с направляющим устройством подвески, а проушина 8 штока с подрессоренной частью автомобиля. В поршне 4 имеются отверстия 9, равномерно расположенные на равном удалении от оси штока и отверстия 10, расположенные также на окружности, но большего радиуса. Отверстия 10 прикрываются тарелкой обратного клапана 11, а отверстия 9 — тарелкой клапана хода отбоя 12, поджимаемой к поршню пружиной 13. В корпусе 2 расположены: клапан хода сжатия 14 , закрывающий отверстия 15 , и обратный клапан 16, закрывающий расположенные по окружности отверстия 17. Клапан 14 нагружен упругой силой пружины 18 , поджатой гайкой 19. Цилиндр и часть резервуара 20 (полость Б) заполнены специальным маслом, в верхней части полости Б содержится воздух, позволяющий ком­пенсировать изменение объема жидкости при перемещении штока.

Поршень относительно цилиндра уплотняется с помощью колец 21, направляющая штока 5 и обойма сальников 25 относительно корпуса уплотняется кольцом 22 . Наиболее сложным является уплотнение шток а, состоящее из пыльников 26, сальника 27, постоянно поджимаемого пружиной 24 и кольца 23. Жидкость, выносимая штоком из цилиндра, сливается в полость резервуара Б через отверстия А.

Амортизатор работает в двух режимах: дроссельном и клапанном. При «плавном» перемещении штока (дроссельный режим) на ходе сжатия жидкость сво­бодно перетекает из полости В в полость Г через отверстия 10. Объем полости Г меньше объема полости В на объем, равный объему што­ка, поэтому избыток жидкости перетекает через отверстия 15, не закрытые обратным клапаном 16, зазоры клапана сжатия 14 в полость резервуара. При «резком» ходе поршня открывается разгрузочный клапан 14, давление в полости В и сила сопротивления ограничиваются и больше не увеличиваются. На ходе отдачи, отверстия 10 в поршне 4 закрываются об­ратным клапаном 11. Жидкость из полости г в полость

В проходит через отверстия 9, в дроссельном режиме через зазоры клапана 12, а при резком ходе, через открытый клапан 12. Недостаток жидкости в полости В компенсируется перетеканием жидкости из полости резервуара через отверстия 17, открытый клапан 16 в по­лость г.

Однотрубный телескопический гидравлический амортизатор с газовой камерой (рис. 22) имеет более простую конструкцию, чем двухтрубный.

Однотрубный амортизатор

Рис. 22. Однотрубный амортизатор

Состоит из рабочего цилиндра 3, внутри которого размещен шток 1 с поршнем 2. Уплотнение штока относительно цилиндра обеспечивается сальниками 6. Камера 5 амортизатора заполнена сжатым инертным газом. Газовая камера изолирована от жидкости разделительным поршнем 4. В поршне 4 (рис. 22, а, б) имеются два ряда сквозных косо расположенных отверстий 9 и 10. Внутренние отверстия закрыты сверху клапаном сжатия 7, а снизу клапаном отбоя 8. Клапаны состоят из тонких стальных дисков одинаковой толщины, собранных в пакет. В местах выхода отверстий внутреннего ряда на поршне выполнены калиброванные просечки, через которые жидкость проходит при работе амортизатора в дроссельном режиме.

В клапанном режиме давление жидкости увеличивается, и диски клапанов отгибаются, и проходные сечения клапанов увеличиваются. На рис. 22, б показана работа клапанов на ходе сжатия, на рис. 22, в на ходе отбоя.

6. Принципиальные схемы пневматической и гидропневматической подвесок. Устройство и работа

Подвеска с пневматическими упругими элементами содержит следующие основные функциональные элементы (рис. 23).

Принципиальная схема пневматической подвески

Рис. 23. Принципиальная схема пневматической подвески

Компрессор 1 нагнетает сжатый воздух через фильтр водомаслоотделитель 2 и регулятор давления 3 в ресивер 4. Из ресивера 4 через воздухоочиститель 6 воздух поступает в регулятор положения высоты кузова 9. Двойной круглый баллон 13 соединен с дополнительным металлическим резервуаром постоянного объема 8, необходимым для увеличения объема сжимаемого воздуха и обеспечения плавного изменения давления и жесткости подвески.

Регулятор 9 обеспечивает постоянное положение высоты кузова при любой нагрузке. При изменении нагрузки, меняется расстояние между кузовом 14 и мостом 15 автомобиля, стойка 12 смещает плунжер 10 регулятора и воздух при уменьшении нагрузки выходит через отверстие 11 в атмосферу, а при увеличении нагрузки поступает из ресивера в упругий элемент подвески (баллоны 8 и 13).

Пневматические подвески обеспечивают высокую плавность движения автомобиля, постоянство нагрузочной высоты, отсутствие кренов кузова при неравномерном распределении массы груза.

Подвеска с гидропневматическими упругими элементами. Гидропневматическими назыJВают пневматические упругие элементы телескопического типа, в которых давление на газ передается через жидкость, п. 2. Поскольку жидкость практически несжимаема, а давление газа в пневматической части упругого элемента может достигать 20 МПа, упругие элементы получаются намного компактнее пневматических. Дросселирование жидкости в гидравлическом цилиндре упругого элемента обеспечивает гашение колебаний кузова автомобиля.

Гидропневматическая подвеска (рис. 24) состоит: из бака 1, насоса 2, обратного клапана 3, гидроаккумулятора 4, регулятора высоты кузова 5 и гидропневматического упругого элемента 6.

схема гидропневматической подвески

Рис. 24. Принципиальная схема гидропневматической подвески

Шток 7 поршня 8 соединяется с направляющим устройством подвески 9, а его цилиндр 10 крепится к подрессорной части автомобиля 11. Насос 2 подаёт рабочую жидкость под давлением в полости А и Б гидроакумулятора 4, обеспечивающего быстрое пополнение при постоянном давлении рабочей полости А2 гидропневматического элемента 6. Постоянное давление поддерживается с помощью разгрузочного устройства 12, состоящего из поршня (золотника) 13, установленного в цилиндре разгрузочного устройства.

Давление жидкости, действующее на поршень 13, уравновешивается упругой силой пружины 14. При превышении установленного давления поршень 13 смещается вниз, при этом открывается канал слива 11. Обратный клапан 15 закрывается при падении давления в нагнетательной магистрали 1. Высокое давление газа в полости С гидроаккумулятора обеспечивает примерно постоянное давление жидкости на выходе даже при больших расходах жидкости. Регулятор 5 обеспечивает постоянное положение кузова относительно поверхности дороги, за счет пополнения полости высокого давления Б1 жидкостью или наоборот слива жидкости.

Пространство между поршнем 8 и разделительной диафрагмой 16 заполнено жидкостью, полость C1 — сжатым газом. Сжатый газ является рабочим телом и обеспечивает упругие свойства подвески, а жидкость передает силы от направляющего аппарата. Изменяя давление газа или объем газовой полости С1, можно изменять жесткость подвески. При колебаниях жидкость проходит через клапаны 17, 18 и испытывает сопротивление. В результате обеспечивается гашение колебаний колес и кузова автомобиля.

Устройство ходовой части

Устройство ходовой части автомобиля

У стройство ходовой части — это раздел в котором вы найдете информацию о подвеске автомобиля, кузове, раме, колесах, балках мостов. Устройство подвески, схема подвески и конструкция подвески в статьях и рисунках. Советы опытных мастеров в ремонте подвески.

Х одовая часть автомобиля служит для перемещения транспортного по дороге. Ходовая часть устроена таким образом, чтобы человеку было удобно, комфортно передвигаться.

Д ля того, чтобы автомобиль мог передвигаться детали ходовой части соединяют кузов с колесами, гасят колебания во время движения, смягчают, воспринимают толчки и усилия. А для того, чтобы не возникало тряски и излишней вибрации во время езды ходовая часть включает в себя следующие элементы и механизмы: упругие элементы подвески, колеса и шины.

Х одовая часть автомобиля состоит из следующих основных элементов:

2. Б алок мостов

3. П ередней и задней подвески колес

4. К олес (диски, шины)

Т ипы подвесок автомобиля:

Подвеска Макферсон

Устройство ходовой части автомобиля

Устройство подвески Макферсон — Подвеска макферсон это так называемая подвеска на направляющих стойках. Этот тип подвески подразумевает использование в качестве основного элемента амортизационной стойки. Подвеска Мак-Ферсон может использоваться как для задних, так и для передних колес.

Независимая подвеска

Независимой подвеска называется , потому что колёса одной оси не связаны жестко, это обеспечивает независимость одного колеса от другого (колеса не оказывают друг на друга никакого влияния).

Устройство соврмененой подвески

Конструкция современной подвески. Современная подвеска это элемент автомобиля, который выполняет амортизационные и демпфирующие свойства, что связано с колебаниями автомобиля в вертикальном направлении. Качество и характеристики подвески позволят пассажирам испытать максимальный комфорт передвижения. Среди основных параметров комфортабельности автомобиля можно признать плавность колебания кузова.

Устройство балансирной подвески — балансирная подвеска особенно уместна для задних колес автомобиля, у которых есть передняя ведущую ось, это аргументируется тем, что такая подвеска почти совсем не занимает места на раме. Балансирная подвеска применяется в основном на трехосных автомобилях, средний и задний ведущие мосты у которых расположены рядом друг к другу. Иногда ее применяют на четырехосных автомобилях, а также многоосных прицепах. Балансирная подвеска бывает двух типов: зависимой и независимой. Зависимые подвески получили большую популярность.

Устройство подвески грузового автомобиля ЗИЛ 130

Устройство подвески грузового автомобиля — это раздел в котором можно изучить строение, назначение, принцип работы подвески грузового автомобиля. Подвеска автомобиля ЗИЛ — раздел, в котором подробно описано устройство подвески грузового автомобиля ЗИЛ 130.

Подвеска обеспечивает упругую связь между рамой или кузовом с мостами автомобиля или непосредственно с его колесами, воспринимая вертикальные усилия и задавая требуюмую плавность хода. Также, подвеска служит для восприятия продольных и поперечных усилий и реактивных моментов, которые действуют между опорной плоскостью и рамой. Подвеска обеспечивает передачу толкающих и скручивающих усилий.

Э лементы ходовой части автомобиля:

Управляемый мост

— Управляемый мост — управляемый мост представляет собой балку, в которой на шарнирах установлены поворотные цапфы и соединительные элементы. Жесткая штампованная балка представляет собой основу управляемого моста. Соответственно передний управляемый мост это обычная поперечная балка с ведомыми управляемыми колесами, к которым не подводится крутящий момент от двигателя. Этот мост не ведущий и служит для поддерживания несущей системы автомобиля и обеспечения его поворота. Существует большой перечень различных типов управляемых мостов, которые применяются на грузовых (6х2) и легковых автомобилях (4х2).

Упругие элементы подвески автомобиля

— Упругие элементы подвески машины — у пругие элементы подвески автомобиля предназначены для смягчения толчков и ударов, а также снижения вертикальных ускорений и динамической нагрузки, которая передается на конструкцию при движении автомобиля. Упругие элементы подвески позволяют избежать прямого воздействия дорожных неровностей на профиль кузова и обеспечивают необходимую плавность хода. Пределы оптимальной плавности хода колеблются от 1-1,3 Гц.

Управляемый мост

Управляемый мост

Установка управляемых колес

Для создания наименьшего сопротивления

движению, уменьшения изнашивания шин

и снижения расхода топлива управляемые

колеса должны катиться в вертикальных плоскостях, параллельных продольной оси автомобиля.

Управляемый мост может быть не разрезным и разрезным. Не разрезной мост состоит из балки и поворотных кулаков, шарнирно соединенных посредством шкворней, обеспечивающих возможность поворота управляемых колес для изменения направления движения автомобиля (на цапфах поворотных кулаков на подшипниках устанавливаются управляемые колеса).
Балка моста должна быть прочной, жесткой и как можно более легкой. Этим требованиям в наибольшей степени удовлетворяют стальные кованые балки двутаврового сечения. По краям балки двутавровое сечение плавно переходит в прямоугольное с отверстиями для установки шкворней поворотного кулака. Средняя часть балки выгнута вниз, с тем чтобы дать мосту свободу вертикального перемещения. Для крепления элементов подвески на балке предусмотрено наличие соответствующих опорных площадок. Шкворень поворотного кулака представляет собой стальной цилиндрический палец, неподвижно установленный в балке. Для его фиксации от поворота и осевого смещения обычно используются клиновые болты. Вертикальные нагрузки воспринимаются опорными подшипниками скольжения (подшипник качения). Для регулировки зазора между верхним торцом бобышки балки и поворотным кулаком устанавливают регулировочные прокладки. Поворот кулака относительно шкворня обеспечивается подшипниками скольжения, образованными поверхностью шкворня и запрессованными в отверстии поворотного кулака бронзовыми втулками.
Разрезной передний мост устанавливают на легковых автомобилях. Он состоит из стойки, которая шарнирно соединена посредством шкворня с поворотным кулаком в средней части и шарнирно соединяется посредством верхнего и нижнего рычагов с балкой переднего моста. Для обеспечения стабилизации управляемых колес оси шкворней наклонены в продольной и поперечной плоскостях.

Управляемый мост

Передние управляемые мосты автомобилей:

а — ГАЗ-53-12; б — ЗИЛ-4314.10; 1 — колесо; 2 — тормозной барабан; 3 — ступица; 4, 5 и 16 — подшипники; б — шпилька; 7— гайка крепления колеса; 8 — маслоотражатель; 9 — тормозной диск; 10 — поворотный кулак; 11 — шкворень; 12 — регулировочная шайба; 13 — рычаг поворотного кулака; 14 — палец рулевой тяги; 15— стопор; 17— балка переднего моста; 18 — поперечная рулевая тяга; 19 — продольная рулевая тяга; 20 — болт ограничения поворота колес; 21 — рычаг рулевой трапеции; 22 — масленки; 23 — регулировочная гайка; 24 — замочное кольцо; 25 — гайка.

Конструкция тягово сцепного устройства

Конструкция тягово сцепного устройства

Тягово-сцепное устройство выполняется на усиленной задней поперечине рамы и служит для буксирования прицепов. Тягово-сцепное устройство грузовых автомобилей двустороннего действия позволяет смягчать осевые толчки, возникающие во время движения автопоезда в обоих направлениях.

Тягово-сцепное устройство представляет собой стальной крюк, проходящий внутри упругого резинового элемента, зажатого между двух опорных шайб. Опорные шайбы вместе с упругим элементом размещаются в массивном цилиндрическом корпусе, с одной стороны закрытом колпаком, а с другой — крышкой, которая болтами крепится к поперечине рамы. Упругий резиновый элемент смягчает ударные нагрузки при трогании автомобиля с прицепом с места при движении по неровной дороге. На крюке имеется защелка, которая застопорена собачкой и шплинтом с цепочкой, предотвращающими самопроизвольный выход дышла прицепа из зацепления с крюком. На автомобилях, не имеющих тягово-сцепного устройства, устанавливают петли, предназначенные только для кратковременного буксирования автомобиля, но исключающие работу с прицепом.

Конструкция тягово сцепного устройства

Конструкция тягово сцепного устройства:

1 — колпак гайки; 2 — гайка; 3 и 14 — опорные шайбы; 4 — упругий элемент; 5 — корпус; 6 — задняя поперечина рамы; 7 — собачка; 8 — отверстие для шплинта; 9 — ось собачки; 10 — цепочка шплинта; 11 — защелка; 12 — крюк; 13 — крышка корпуса.

Конструкция рамы автомобиля

Р а́ ма автомобиля — представляет собой жесткую конструкцию, которая образуется двумя продольными лонжеронами, соединенными между собой поперечинами. В качестве несущей конструкции выступает рама грузового автомобиля. Различают лонжеронные и хребтовые рамы.

Конструкция лонжеронной рамы

Лонжеронная рама состоит из двух продольных штампованных балок швеллерного сечения — лонжеронов, связанных между собой несколькими поперечинами. Такая рама получила название лонжеронной. Поперечины обычно штампованные, служат не только для соединения между собой лонжеронов и придания всей конструкции необходимой жесткости, но и для крепления различных агрегатов автомобиля. Для изготовления элементов рамы обычно применяется низкоуглеродистая сталь. Соединение лонжеронов и поперечин чаще всего выполняется с помощью заклепок. В необходимых местах к лонжеронам и поперечинам, также заклепками или болтами, крепятся различные кронштейны и другие детали для установки агрегатов автомобиля.
Сварка при изготовлении рам применяется довольно редко, поскольку конструкция лонжеронных рам грузовых автомобилей относительно податливы на изгиб, и в особенности на кручение, и сварные швы в этих условиях являются источником образования трещин.
Способность рамы деформироваться при скручивающихся нагрузках позволяет избежать излишне высокие напряжения в местах соединений.

Устройство кузова легкового автомобиля

Кузов автомобиля является самой

дорогостоящей деталью автомобиля.

Кузова грузовых автомобилей



Кузова грузовых автомобилей

могут быть универсальными

или специализированными, их устройство..

Кабина грузового автомобиля закрепляется на раме в трех, четырех точках с помощью упругих устройств, и деформации рамы при движении автомобиля по неровной дороге не вызывают соответствующих деформаций кабины.

В редких случаях на грузовых автомобилях применяется так называемая хребтовая рама, представляющая собой стальную трубу большого диаметра, проходящую вдоль автомобиля по его продольной оси. В передней части рама раздваивается, образуя два продольных лонжерона, служащих для установки двигателя с коробкой передач. Внутри трубы размещается карданная передача. Ведущие мосты автомобиля в этом случае имеют подрессоренные редукторы, от которых крутящий момент подводится к колесам качающимися полуосями.

1n

Конструкция рамы автомобиля КамАЗ-5320:

1 — кронштейн крепления переднего буфера; 2 — первая поперечина; 3 — правый лонжерон; 4 — кронштейн передней опоры двигателя; 5 — удлинительная вставка лонжерона переднего моста; 6 — две половины второй поперечины; 7— кронштейн задней опоры двигателя; 8 — кронштейн крепления поддерживающей опоры силового агрегата; 9 — две половины третьей поперечины; 10 — четвертая поперечина; 11 — удлинительная вставка лонжерона промежуточного моста; 12 — две половины пятой поперечины с усиливающими косынками; 13 — удлинительная вставка лонжерона заднего моста; 14 — шестая поперечина; 15 — раскос задней поперечины; 16 — усилительная накладка задней поперечины; 17— задняя поперечина; 18 — косынка раскоса; 19— стяжка раскоса задней поперечины; 20 — левый лонжерон; 21 — задний кронштейн передней подвески; 22 — кронштейн крепления верхнего ушка амортизатора; 23 — кронштейн крепления водяного радиатора; 24 — передний кронштейн подвески.

Конструкция ходовой части автомобиля

Конструкция ходовой части автомобиля

Несущей конструкцией автомобиля принято называть остов, который соединяет между собой все его части. Это может быть либо отдельная конструкция, рама, на которую устанавливаются кузов и агрегаты автомобиля (двигатель, механизмы трансмиссии, ведущие и управляемые мосты, подвеска и т. п.), либо сам кузов. Раму автомобиля с установленными на ней агрегатами называют шасси. Под словом «кузов» в автостроении в большинстве случаев понимают пространство для размещения основного объекта перевозок. Несущая конструкция автомобиля воспринимает различные виды нагрузок: нагрузки, связанные с массой узлов и агрегатов, установленных на ней, а также массой пассажиров и груза, и динамические нагрузки, возникающие при движении автомобиля по неровной дороге и при изменении режимов работы двигателя. В исключительных случаях, например при дорожно-транспортных происшествиях, несущая конструкция воспринимает нагрузки аварийного характера.
Основное назначение несущей конструкции состоит в объединении в единое целое всех частей автомобиля в процессе его функционирования.
Требования к несущим конструкциям. Из основного назначения несущей конструкции — объединение в единое целое всех частей автомобиля — вытекают главные требования, предъявляемые к ней, — прочность и жесткость. Под прочностью понимают способность несущей конструкции воспринимать эксплуатационные нагрузки без поломок системы в целом или ее элементов, а под жесткостью — ее способность сохранять свою форму без остаточных деформаций и без недопустимых упругих деформаций при воздействии тех же нагрузок.
Классификация несущих конструкций. Несущие конструкции автомобилей могут быть классифицированы по различным признакам.

По способу распределения функций несущие конструкции автомобилей могут быть:

рамными (несущей конструкцией служит отдельная конструкция — рама, на которой монтируется кузов, полностью или частично освобожденный от функций несущей конструкции), такое конструктивное решение типично для грузовых автомобилей высокой проходимости;
• с несущими кузовами (функции несущей конструкции выполняет кузов), это типично для большинства легковых автомобилей и автобусов.

Несущие кузова легковых автомобилей могут быть:

каркасные;
• полукаркасные (скелетные);
• оболочковые.
Несущие кузова автобусов могут быть:
• каркасными или скелетными;
• с интегральным основанием.

№11 «Ходовая часть автомобиля»

Внимание! Все тесты в этом разделе разработаны пользователями сайта для собственного использования. Администрация сайта не проверяет возможные ошибки, которые могут встретиться в тестах.

Целью настоящих тестов является закрепление студентами знаний, полученных при изучении теоретического материала по теме «Ходовая часть автомобиля», входящей в состав МДК 01.02 «Устройство, техническое обслуживание и ремонт автомобильного транспорта» профессии 23.01.03 «Автомеханик», 1 курс.

Система оценки: 5 балльная

Список вопросов теста

Вопрос 1

Какие упругие элементы применяются в независимой подвеске?

Варианты ответов
  • листовые полуэллиптические рессоры
  • спиральные цилиндрические пружины
  • упругие элементы обоих указанных типов
Вопрос 2

Что означают в маркировке шин легковых автомобилей буквенные индексы L, P, Q, S ?

Варианты ответов
  • индекс максимальной допустимой скорости
  • индекс максимально грузоподъемности
  • товарный знак завода-изготовителя
Вопрос 3

Какие силы воздействуют на несущий кузов или раму автомобиля при движении?

Варианты ответов
  • сила тяжести
  • продольные силы
  • вертикальные силы
  • боковые силы
  • все перечисленные силы
Вопрос 4

Каким должно быть усилие хода отдачи, создаваемое телескопическим амортизатором?

Варианты ответов
  • равно усилию хода сжатия
  • больше усилия хода сжатия в 2-3 раза
  • меньше усилия хода сжатия в 2-3 раза
  • в зависимости от конструктивных особенностей амортизатора
Вопрос 5

Какие функции выполняют амортизаторы?

Варианты ответов
  • увеличивают жёсткость упругих элементов подвески
  • гасят колебания автомобиля, возникающие после наезда на препятствие
  • уменьшают жесткость упругих элементов подвески
  • ограничивают вертикальные перемещения колёс и мостов относительно кузова или рамы
Вопрос 6

Каким образом осуществляется соединение колес с балкой моста на автомобилях с зависимой передней подвеской?

Варианты ответов
  • цапфа колеса крепится к деталям, имеющим возможность перемещаться относительно балки
  • цапфа шарнирно крепится к концевой части балки
  • цапфа может крепиться любым из названных способов в зависимости от марки автомобиля
Вопрос 7

Какие усилия воспринимают и передают цилиндрические пружины подвески?

Варианты ответов
  • усилия, направленные горизонтально перпендикулярно к оси движения автомобиля
  • усилия, направленные горизонтально вдоль оси движения автомобиля
  • усилия, направленные вертикально
  • усилия, направленные во всех перечисленных направлениях
Вопрос 8

Что такое сайлентблок?

Варианты ответов
  • устройство, блокирующее вертикальные перемещения кузова
  • элемент, состоящий из резиновой втулки с железным сердечником
  • подушка под амортизатор
Вопрос 9

Какую функцию выполняют рычаги подвески?

Варианты ответов
  • удерживают колесо от продольных и поперечных перемещений
  • сглаживают вибрации во время движения
  • придают дополнительную жёсткость кузову
Вопрос 10

Благодаря каким конструктивным особенностям нашли широкое применение шаровые опоры?

Варианты ответов
  • возможность вращения в любых плоскостях
  • высокая нагрузочная способность
  • не требовательны к обслуживанию
  • всё вышеперечисленное
Вопрос 11

Что такое клиренс?

Варианты ответов
  • величина хода штока амортизаторов
  • максимальная возможная деформация пружин
  • расстояние от дороги до нижней точки днища автомобиля

Устройство ходовой части

Устройство ходовой части автомобиля

У стройство ходовой части — это раздел в котором вы найдете информацию о подвеске автомобиля, кузове, раме, колесах, балках мостов. Устройство подвески, схема подвески и конструкция подвески в статьях и рисунках. Советы опытных мастеров в ремонте подвески.

Х одовая часть автомобиля служит для перемещения транспортного по дороге. Ходовая часть устроена таким образом, чтобы человеку было удобно, комфортно передвигаться.

Д ля того, чтобы автомобиль мог передвигаться детали ходовой части соединяют кузов с колесами, гасят колебания во время движения, смягчают, воспринимают толчки и усилия. А для того, чтобы не возникало тряски и излишней вибрации во время езды ходовая часть включает в себя следующие элементы и механизмы: упругие элементы подвески, колеса и шины.

Х одовая часть автомобиля состоит из следующих основных элементов:

2. Б алок мостов

3. П ередней и задней подвески колес

4. К олес (диски, шины)

Т ипы подвесок автомобиля:

Подвеска Макферсон

Устройство ходовой части автомобиля

Устройство подвески Макферсон — Подвеска макферсон это так называемая подвеска на направляющих стойках. Этот тип подвески подразумевает использование в качестве основного элемента амортизационной стойки. Подвеска Мак-Ферсон может использоваться как для задних, так и для передних колес.

Независимая подвеска

Независимой подвеска называется , потому что колёса одной оси не связаны жестко, это обеспечивает независимость одного колеса от другого (колеса не оказывают друг на друга никакого влияния).

Устройство соврмененой подвески

Конструкция современной подвески. Современная подвеска это элемент автомобиля, который выполняет амортизационные и демпфирующие свойства, что связано с колебаниями автомобиля в вертикальном направлении. Качество и характеристики подвески позволят пассажирам испытать максимальный комфорт передвижения. Среди основных параметров комфортабельности автомобиля можно признать плавность колебания кузова.

Устройство балансирной подвески — балансирная подвеска особенно уместна для задних колес автомобиля, у которых есть передняя ведущую ось, это аргументируется тем, что такая подвеска почти совсем не занимает места на раме. Балансирная подвеска применяется в основном на трехосных автомобилях, средний и задний ведущие мосты у которых расположены рядом друг к другу. Иногда ее применяют на четырехосных автомобилях, а также многоосных прицепах. Балансирная подвеска бывает двух типов: зависимой и независимой. Зависимые подвески получили большую популярность.

Устройство подвески грузового автомобиля ЗИЛ 130

Устройство подвески грузового автомобиля — это раздел в котором можно изучить строение, назначение, принцип работы подвески грузового автомобиля. Подвеска автомобиля ЗИЛ — раздел, в котором подробно описано устройство подвески грузового автомобиля ЗИЛ 130.

Подвеска обеспечивает упругую связь между рамой или кузовом с мостами автомобиля или непосредственно с его колесами, воспринимая вертикальные усилия и задавая требуюмую плавность хода. Также, подвеска служит для восприятия продольных и поперечных усилий и реактивных моментов, которые действуют между опорной плоскостью и рамой. Подвеска обеспечивает передачу толкающих и скручивающих усилий.

Э лементы ходовой части автомобиля:

Управляемый мост

— Управляемый мост — управляемый мост представляет собой балку, в которой на шарнирах установлены поворотные цапфы и соединительные элементы. Жесткая штампованная балка представляет собой основу управляемого моста. Соответственно передний управляемый мост это обычная поперечная балка с ведомыми управляемыми колесами, к которым не подводится крутящий момент от двигателя. Этот мост не ведущий и служит для поддерживания несущей системы автомобиля и обеспечения его поворота. Существует большой перечень различных типов управляемых мостов, которые применяются на грузовых (6х2) и легковых автомобилях (4х2).

Упругие элементы подвески автомобиля

— Упругие элементы подвески машины — у пругие элементы подвески автомобиля предназначены для смягчения толчков и ударов, а также снижения вертикальных ускорений и динамической нагрузки, которая передается на конструкцию при движении автомобиля. Упругие элементы подвески позволяют избежать прямого воздействия дорожных неровностей на профиль кузова и обеспечивают необходимую плавность хода. Пределы оптимальной плавности хода колеблются от 1-1,3 Гц.

Конструкция автомобильных шин

Конструкция автомобильных шин

Назначение шины — поглощать и смягчать толчки и удары, воспринимаемые колесом от дороги, обеспечивать с ней достаточное сцепление, снижать уровень шума, возникающий при движении автомобиля и уменьшать разрушающее действие автомобиля на дорогу.

Требования, предъявляемые к конструкции автомобильных шин:

1. Обеспечение высокой комфортабельности — шина и подвеска, работая последовательно в вертикальном направлении, обеспечивают требуемую частоту собственных колебаний подрессоренной части конструкции. Помимо этого, влияние шины на комфортабельность автомобиля определяется следующим:

• уровнем шума при прямолинейном и криволинейном движении;
• сопротивлением повороту управляемых колес;
• радиальным и боковым биениями, которые передаются на рулевое управление.

2. Обеспечение безопасности движения — реализация этого требования в основном определяется прочностью каркаса шины, способного противостоять действию внутреннего давления и ударным нафузкам. Безопасность шины определяется следующими ее свойствами:

устойчивостью прямолинейного движения;
• способностью двигаться с высокими скоростями без опасности возникновения сильных вибраций и разрушения;

хорошими сцепными свойствами как в продольном, так и в боковом направлениях, а также на дорогах с мокрым, загрязненным, заснеженным и обледенелым покрытиями.
3. Высокие экономические показатели — экономичность шины определяется ее стоимостью и эксплуатационными затратами.
4. Удобство компоновки (с позиции размещения колес и шин на автомобиле они должны иметь минимально допустимые размеры) заключается в следующем:
• уменьшается высота и ширина колесной ниши, что позволяет увеличить объем салона, моторного отсека и багажного отделения легкового автомобиля или улучшить планировку салона автобуса;
• уменьшается высота легкового автомобиля;
• уменьшается высота пола автобуса или положение грузовой платформы грузового автомобиля, что важно для ускорения погрузки и выгрузки;
• уменьшается пространство, занимаемое запасным колесом.

В настоящее время на легковых автомобилях применяются колеса диаметром обода не менее 13″ (дюймов), а на грузовых — 18″
Покрышка шины воспринимает давление сжатого воздуха, находящегося в камере, предохраняет камеру от повреждений и обеспечивает сцепление колеса с дорогой.
Покрышка состоит из протектора, подушечного слоя (брекера), каркаса, боковин и бортов с сердечниками. Каркас является основой покрышки, соединяя все ее части в одно целое. Каркас изготовляется из одного или нескольких слоев специальной прорезиненной кордной ткани (корда) толщиной 1—1,5 мм. В зависимости от типа и назначения шины корд может быть хлопчатобумажным, вискозным, капроновым, нейлоновым и металлическим. Число слоев корда в каркасе с учетом их равнопрочное™ может быть: 2—6 для шин легковых автомобилей; 4—14 для шин грузовых автомобилей и автобусов. Число слоев корда определяет прочность каркаса и допустимую нагрузку на шину.
Боковина шины представляет собой слой резины, привулканизирован-ный к каркасу и защищающий его от вредных воздействий окружающей среды и механических повреждений. Боковины должны быть достаточно тонкими и гибкими, для того чтобы хорошо противостоять циклическому изгибу и оказывать малое влияние на изгибную жесткость каркаса. Толщина боковины 1,5—3,5 мм у обычных шин и до 10 мм у арочных. На нижней поверхности боковины формируется монтажный поясок в виде концентричных резиновых колец, которые позволяют проконтролировать правильность посадки борта шины на полку обода при монтаже. В верхней части боковины имеется защитный поясок в виде также концентричных, но более массивных колец. Они служат для защиты от повреждений при боковых наездах на бордюрный камень и т. п.
Протектор (рис. 121) обеспечивает сцепление шины с дорогой и предохраняет каркас от повреждения. Его изготовляют из прочной, твердой, износостойкой резины. В нем различают расчлененную часть (рисунок) и подканавочный слой, который составляет 20—40 % толщины протектора в целом. Толщина протектора шин легковых автомобилей — 10—15 мм, грузовых и автобусов — 15—30 мм.

Конструкция автомобильных шин

Рисунки протекторов: а — дорожный; б — универсальный; в — повышенной проходимости; г — карьерный; д — зимний.

Бескамерные шины, подробнее.

Между каркасом и протектором располагается подушечный слой (брокер). Он представляет собой резиновый или резино-кордный слой и служит для усиления каркаса и улучшения связи каркаса с протектором. Брекер смягчает воздействие на каркас ударных нагрузок и способствует более равномерному распределению по каркасу окружных и поперечных сил, возникающих при взаимодействии колеса с дорогой.
Борта надежно укрепляют покрышку на ободе. Снаружи борта имеют один-два слоя прорезиновой ленты, предохраняющей их от истирания об обод и от повреждений при монтаже и демонтаже шины. Внутри бортов имеются стальные проволочные сердечники, которые увеличивают прочность бортов, предохраняют их от растягивания и предотвращают соскакивания шины с обода колеса. Шина с поврежденным сердечником не пригодна для эксплуатации.
Шины различают по назначению, геометрическим параметрам, конструктивным признакам и эксплуатационным характеристикам.

По назначению различают шины:

для легковых автомобилей;
• для грузовых автомобилей и автобусов;
• для автомобилей повышенной и высокой проходимости;
• для специальных машин.

В зависимости от дорожного покрытия и его состояния они различаются по типу рисунка протектора:

дорожные (для дорог с усовершенствованным покрытием);
• универсальные (для дорог с различным покрытием);
• повышенной проходимости;
• карьерные.
Учитывая различное состояние покрытия в зависимости от времени года шины бывают:
• летние (со стандартным дорожным рисунком);
• для грязи и снега;
• для грязи, снега и льда. Основными параметрами шины являются:
• В — ширина профиля;
• Н — высота профиля;
• d — посадочный диаметр;
• А — посадочная ширина (обода).

В зависимости от ширины профиля шины подразделяются на:

крупногабаритные (В> 350 мм);
• среднегабаритные (200 < В < 350 мм);
• малогабаритные (В < 200 мм).

Отношение высоты профиля шины к ее ширине (Н/В), выраженное в процентах, определяет серию шины, т. е. серия 70 означает, что Н/В = 0,7. Классификация шин по профилю приведена в табл.


Конструктивные параметры автомобильных шин:

конструкция каркаса — диагональная или радиальная, число слоев корда в каркасе;
• материал, из которого изготовлен корд каркаса;
• конструкция брекера — число слоев корда, сплошной по ширине или расчлененный, наличие прокладок между слоями брекера;
• материал, из которого изготовлен корд брекера;
• конструкция протектора — высокий или низкий, тип рисунка протектора;

• способ герметизации — камерная или бескамерная;
• наличие специальных устройств, повышающих безопасность шины при ее разгерметизации.
Эксплуатационные параметры шин:
• максимальная скорость качения;
• максимальная допустимая радиальная нагрузка;
• рекомендуемое внутреннее давление воздуха.
По конструкции шины могут быть диагональные, радиальные и диагонально опоясанные.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *